
Summary of Complex Functions and Mappings

A function f (z) is analytic in a region D if it is differentible
at every point in the region. This is quite restrictive as it means
that if f (z) = u(x , y) + iv(x , y) with z = x + iy , then the
functions u, v satisfy the Cauchy Riemann equations.

A function that is analytic for all z ∈ C is said to be entire.
Otherwise it is either not defined everywhere in C or it has
singularities.

When a function has an isolated singularity that is a pole
of order m, there are formulae for evaluating line integrals on
closed contours around the singulariiy (or many singularities) This
involves the residue at each singularity.

The calculus of residues provides formulae for contour
integrals when a function has singularities inside a closed contour.



There is a way to interpret ∞ geometrically as a point at the
north pole of a sphere.

When f(z) is analytic in a region D, you often need to know
whether f (z) = c has one or more solutions in D.

This may be studied geometrically by looking at the
mapping properties of f (z).

You can count the number of solutions (and singlarities) in a
region by evaluating a contour integral around a curve that
encloses the region



The crucial formulae and results are
1. Cauchy’s integral theorem.
2. Cauchy’s integral formula
3 Generalized Cauchy’s integral formula.
4. Fundamental theorem of algebra and the formulae for

the number of solutions of an equation inside a contour.
5. Representations of functions by Taylor and Laurent

series. What is a singularity and what is the order of a pole or a
zero.

6. Representations of functions by mappings of the
z-plane to the w-plane. Can say when a function has a zero or a
pole at infinity.

7. The residue theorem; applications to evaluate
trigonometric integrals, Fourier and Laplace transforms.



Most of the functions that arise in physics / science are, or
can be approximated by, analytic functions. So there is a need to
know about their singularities, zeroes, derivaives, integrals, Taylor
series, ...

Also want to know about various transforms, series and
special approximations. Very often if you cannot solve a problem in
calculus I easily, then you should look at it as a complex variable
problem and see if you can obtain an answer using analytic
function theory



A topic that is used very often in complex analysis is
changing contours of integration. The rules are;

1. Suppose Γ1, Γ2 and two contours from a to b in C and
D is the region between them. If f (z) is analytic in D then∫

Γ1

f (z) dz =

∫
Γ2

f (z) dz

2. Suppose C1,C2 are two simple closed loops in the plane
that do not intersect, and D is the region between them. If f (z) is
analytic on D, then∫

C1

f (z) dz =

∫
C2

f (z) dz

so choose your contours and loops to make the calculation easy!



Complex Mappings and Functions

A complex function defined on a domain D can be visualized
geometrically as a mapping of the plane to itself. Suppose
f : D(⊂ C)→ C is an analytic function. Then we know that

f (z) = u(x , y) + i v(x , y)

can be represented by its real and imaginary parts. For example

z2 = (x2−y2) + 2ixy and z3 = (x3−3xy2) + i(3x2y −y3)

Write F (x , y) :=

(
u(x , y)
v(x , y)

)



We often graph the contour lines of u, v . That is the curves
in the plane where

u(x , y) = c , v(x , y) = d for different values of c,d

The contour lines for z2 are hyperbolae, x2 − y2 = c and
xy = d . The derivative of f (z) is represented by a matrix.

f ′(z) = DF (x , y) =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

This matrix has |f ′(z)|2 = det(DF (x , y)) and it is singular if and
only if f ′(z) = 0.



DF (x , y) is called the Jacobian matrix of F at (x,y) and its
determinant det(DF (x , y)) is called the Jacobian of F at (x,y).

A function (map) f : D → C is said to be 1-1 on D provided
z , ζ ∈ D and z 6= ζ implies that f (z) 6= f (ζ). Let G = f (D), and f
be 1-1 on D, then there is an inverse function g : G → D such that

g(w) := z when w = f (z)

For example if f : B → C is defined on a ball B of radius
less than π/2, and f (z) := sin z , then its inverse is
g(w) := arcsin(w).



The main theorem about inverse functions is the following.
It is much the same as the theorem in 1-d calculus.
Theorem (Inverse function) Suppose that f is analytic at a
point z0 ∈ D and f ′(z0) 6= 0. Then there is an open disk Br

centered at z0 and a function g : G → Br that is inverse to f with
g(w0) = z0. Moreover g is an analytic function of w near w0.

When γ1, γ2 are two differentiable curves that intersect at a
point z0 ∈ D, then the angle between the curves is θ where θ is the
angle between the unit tangent vectors to the curves, so

cos θ := t1 · t2

If this angle is zero the curves are said to be tangent (kiss) while if
θ = π/2, they are orthogonal.
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Note that the level curves of the functions u, v are
orthogonal at all points where f ′(z0) 6= 0. Thus the level curves
can be used to define a grid on a set D. The usual rectangular grid
is given by the level curves of f (z) = z .

When γ1, γ2 are two differentiable curves in D that intersect
at a point z0 then their images under an analytic function f will
again be differentiable curves defined by

σ1 := {f (γ1(t)) : t ∈ I } and σ2 := {f (γ2(t)) : t ∈ I }

that will intersect at w0 := f (z0).



A mapping F : D → R2 is said to be conformal if it maps
two differentiable curves γ1, γ2 in D into differentiable curves
σ1, σ2 in R2 with the property that if γ1, γ2 intersect at an angle θ
in D then σ1, σ2 also intersect at the angle θ in R2.

The first theorem about complex maps is
Theorem. Suppose that f is analytic at a point z0 ∈ D with
f ′(z0) 6= 0 then the associated map F : D → R2 is a conformal
map on a neighborhood of (x0, y0).

So any map defined by the real and imaginary part of an
analytic function is 1-1 and conformal near every point where its
Jacobian is non-zero.



This is an essential property for many maps used in
navigation, flying etc. You need the angles in the map to be
correct The Mercator projection is a conformal projection.

You know that a straight line in the plane of slope m has
that equation y = mx + b in Cartesian coordinates. What is its
equation in the form z = ζ(t)?

Ans: ζ(t) = t + i(mt + b) −∞ < t <∞
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The equation of a circle is (x − a)2 + (y − b)2 = r2 in
Cartesian coordinates. Let z0 = a + ib, then the complex equation
is |z − z0|2 = r2. Alternatively it has the parametric equation
ζ(θ) = z0 + r e iθ for −π ≤ θ ≤ π. Consider the function

f (z) :=
az + b

cz + d
for z 6= −d/c

If c = 0, d 6= 0 this is a linear transformationn that maps lines to
lines and circles to circles. When c 6= 0 this defines a linear
fractional transformation by w = f (z). .

Assume ad − bc 6= 0, then this function maps every complex
number z, except (-d/c) onto another complex number w.

This mapping is 1-1 from D\{−d/c} onto C and its
inverse is another linear fractional transformation.



A domain D is proper if C\D 6= ∅. B1 is the unit disk.
Theorem (Riemann Mapping) Let D be a proper simply
conneted domain in C. Then there is a 1-1 analytic function that
maps D onto B1.

It took almost fifty years from when Riemann stated this
result before a (reasonably) rigorous proof was given.

How to find this function? There are formulae / algorithms
(the Schwarz-Christoffel construction) for mapping a polygon onto
the unit disk. See appendix A of the text.

In general you must solve a problem in the calculus of
variations. According to Wikipedia this is an important problem in
image processing and there still is research on the numercial
constructions of these mappings.


