
Sequences of Complex Numbers

We’ll now discuss questions of convergence and approximation of
complex numbers and functions. Some of this theory is similar to
the theory of real functions of a real variable x but the results often
are much nicer.

In general a sequence in a set S is an infinite set {sm : m ≥ 1} of
points in S indexed by the positive integers. They need not all be
different. Here we shall usually just consider sequences of real or
complex numbers or functions.



The sequence S := {zm : m ≥ 1} is a sequence of complex
numbers when each zm is a complex number. Usually we are
interested in sequences that converge to a specific (complex)
number. The sequence is said to converge to a limit z̃ provided
that for any choice of ε > 0, there is an M(ε) such that

m > M(ε) ⇒ |zm − z̃ | < ε.

That is every zm wih m large enough is within a distance ε of the
limit z̃ . When a limit in this sense exists, it must be unique. (You
cannot have two different limits z̃1, z̃2.

When there is no such z̃ , then the sequence is said diverge.



Often sequences are defined explicitly by an iterative
algorithm such as the linear difference equation

zm+1 = a zm + b, z0 = 1, m ≥ 0

Here a,b are complex numbers. Using elementary methods you can
show that such a sequence will converge to a finite limit when
|a| < 1 and will not converge when |a| > 1.

If this sequence converges, then it converges to the limit
z̃ = b/(1− a). So the sequence definitely does not converge
when a = 1. (Why?, evaluate the first 4 or so terms and find an
explicit formula for zm when a = 1. )



The sequence defined by sm+1 = sm + am, s0 = 0 for
m ≥ 0 has

sm+1 = a0 + am + . . . + am =
m∑
j=0

aj

If this sequence has a limit as m→∞, then we have

s̃ := lim
m→∞

sm =
∞∑
j=0

aj

and sm, s̃ arerespectively called the partial sums, and the sum of
this series. The series is said to be divergent when these partial
sums do not converge to a limit. In this case the infinite sum is not
a well defined mathematical quantity.



When f is a continuous function on C consider the sequence
defined by zm+1 := f (zm) for m ≥ 0 and z0 given.

If zm converges to a limit z̃ as m→∞, then it is easy to
show that z̃ is a fixed point of f . That is, z̃ is a solution of
z = f (z). (Why?)

The sequence

zm+1 :=
1

2

(
zm +

a

zm

)
m = 1, 2, 3, . . .

converges to one of the two numbers ±
√
a when a, z1 ∈ C.

(Why?) Which one it converges to depends on where you start;
the choice of z1.



If a = 3, z0 = 1, then you obtain

1, 2,
7

4
,

97

56
= 1.73214286, . . .

A calculator gives
√

3 = 1.732050808 . . .. Suggest that you try this
algorithm with a = i ,−1,−4 or some other favorite complex
number.

When you know the possible limits, as in this problem, it is
usually easy to see whether a particular sequence converges to the
limit - or not. This will depend on the choice of z0.



An example of a sequence of partial sums is the sequence
given by

s1 = 1, sm+1 := sm +
(−1)m+1

2m − 1
m ≥ 1

This is a sequence of rational numbers that converges very slowly
to the number π/4. It takes M = 200 to have the answer to 2
decimal places and 5 billion iterations to obtain π to 10 decimal
places. For example

s7 = 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13

It is not hard to prove that the sequence converges but it is not a
practical way for estimating π.



There are many ”tests” for the convergence of complex
series. The comparison test says that a series

∑∞
j=0 cj

converges if there is a sequence of positive real numbers Mj such

that |cj | ≤ Mj for all j and
∑J

j=0 Mj converges to a limiting real
number as J →∞. Note that the sums of the partial sums with
Mj is an increasing sequence of real numbers so this sequence has
a limit if and only if it is bounded above by a real number S.

The ratio test says that the series
∑∞

j=0 cj converges if

lim
j→∞

∣∣∣∣ cj+1

cj

∣∣∣∣ = L < 1.

When L > 1 then the series diverges.



There are many other tests for sequences to converge that
may be found in texts - but usually one wants to describe not only
whether it converges but how fast it converges. In numerical
computations, we often talk about the rate of convergence of a
sequence of numbers to a limit. This is a matter of describing how
M(ε) grows as ε→ 0. You would like this to be a power law of the
form M(ε) ≤ C ε−d for some C , d positive.

A number zm is said to be an approximation that is accurate
to d decimal places provided |zm − z̃ | < 5× 10−(d+1).

The sequence defined by zm := 1 +
∑m

j=1
1
j! is a

sequence of rational numbers that converges very rapidly to the
transcendental number e since m! grows very rapidly as m
increases.



Sequences and Series of Analytic Functions

A function is said to be analytic on a domain D if every derivative
f (k)(z) exists and is continuous on D. From the Cauchy integral
formulae it is enough that it just be differentiable on D. Thus from
now on in this course we shall use the adjective analytic rather
than differentiable for complex functions and use the fact that all
the derivatives exist and are diffferentiable on D.

Let D be a non-empty domain in C and {fm : m ≥ 1 } be a
sequence of analytic functions on D. This sequence converges to a
function f (z) on some subset D1 of D provided the sequences of
complex numbers {fm(z) : m ≥ 1} converges to f (z) for each
z in D1.



Geometric Sums and Series.

The geometric sum of degree M is the polynomial

sM(z) := 1 + z + z2 + . . .+ zM .

This function is analytic for all z ∈ C. Special values include
sM(0) = 1, sM(1) = M + 1 for all integers M. In high school you
may have seen a proof that

sM(z) :=
zM+1 − 1

z − 1
for z ∈ C, z 6= 1

If not, please verify.

What happens as M →∞?



When |z | ≥ 1, then this sum has no limit as M →∞. Look
at what happens for z = ±1,±i and see that in these cases the
sum takes just a couple of values but doesn’t have a limit.

When |z | = r < 1 then |z |M → 0 as M →∞ and the
sequence of polynomials converges to the function
F (z) := 1/(1− z) for all z ∈ B1(0) and not for any z with
|z | > 1.

Note that this convergence of a sequence of functions only
occurs on a proper subset of the domain C .

Suggest that you verify this computationally. Find out how large M
must be for |rM | ≤ 0.5 × 10−5 for r = 0.2, 0.4, 0.5, 0.7, 0.9?
Find a formula for this M.



Most complex analysis texts have a chapter on the
convergence of sequences of polynomials and in particular, the
convergence of power series.

These are sequences defined by

sm(z) := sm−1(z) + cm (z − z0)m for m ≥ 1

and s0(z) = c0 with z0 and the cm all complex numbers. Thus

sm(z) =
m∑
j=0

cj (z − z0)j

is a polynomial of degree m.

If only a finite number of the cm are non-zero, this limit will
be a polynomial. and analytic on C



Note that sm(z0) = c0 for all m so this sequence will
converge at z0. From the difference equation, one sees that if the
sequence {sm(z)} converges to a limit at a point z 6= z0 then you
must have limm→∞ |cm (z − z0)m| = 0.

In your first calculus course you should have learnt about
Taylor polynomials, Taylor approximations of functions and Taylor
series. These have especially nice properties when the functions is
an analytic function on a domain D ⊂ C.



Taylor approximations of degree m

When f : D → C is an analytic function, z0 ∈ D then the linear
approximation to f (z) near z0 is the affine function

T1f (z) := f (z0) + f ′(z0) (z − z0)

The quadratic approximation is defined by

T2f (z) := f (z0) + f ′(z0) (z − z0) +
f ”(z0)

2
(z − z0)2

and for each integer m, the m-th Taylor approximation is

Tmf (z) := Tm−1f (z) +
f (m)(z0)

m!
(z − z0)m.



The m-th Taylor approximation is a polynomial in (z − z0) of
degree less than or equal to m. When f (z) is a polynomial of
degree M, then all its derivatives of order k with k ≥ M + 1 are
identically 0, so this becomes a formula for the polynomial in terms
of powers of (z − z0).

When f is analytic on D, then the Taylor series of f at z is
the expression

Tf (z) := lim
m→∞

Tmf (z) =
∞∑

m=0

f (m)(z0)

m!
(z − z0)m.

provided this limit exists. This is a formal definition so a question is
when does this limit exist as a differentiable function of z near z0?



Ex: f (z) := Log(1 + z) is analytic on a disk of radius 1 centered
at z=0 , with Log(1) = 0. Then

T3f (z) = z − z2

2
+

z3

3

and the Taylor series of Log(1 + z) is

∞∑
m=1

(−z)m

(m)!
= z − z2

2
+

z3

3
− z4

4
+ . . .

Each of the Taylor approximations Tmf (z) is a polynomial but this
Taylor series will only converge to Log(1 + z) when |z | < 1. It
does not converge when z = −1. The sequence of approximations
has Tmf (−1)→ −∞ as m→∞. Note that when z = 2, then
the series does not converge to Log 3 = 1.0986



A Taylor series about z0 = 0 is often called a Maclaurin
series. The main theorem about the convergence of Taylor series is
the following nice result.

Theorem. Suppose that f (z) is analytic on the disk BR(z0),
then the Taylor polynomials Tmf (z) converge to f (z) as m→∞
for all z ∈ BR(z0).

Thus Taylor series converges to the actual function f(z) on
any disk center z0 on which f (z) is analytic, That is on disks
where f (z) is differentiable. The preceding example of Log(1 + z)
shows that the Taylor series of an analytic function need not
always converge to the function at points where the function is
analytic, but the following does hold.

Corollary. Suppose that f (z) is a differentiable on C, then the
Taylor polynomials Tmf (z) converge to f (z) as m→∞ for all
z ∈ C.



Examples of Maclaurin Series include

1. ez = 1 +
∞∑
j=1

z j

j!
= 1 + z +

z2

2!
+

z3

3!
+ . . . .

2. sin z =
∞∑
j=1

(−1)j−1
z2j−1

(2j − 1)!
= z− z3

3!
+
z5

5!
− z7

7!
+ . . . .

3. cos z = 1 +
∞∑
j=1

(−1)j
z2j

(2j)!
= 1− z2

2!
+

z4

4!
− z6

6!
+ . . . .

These come from the formulae for the derivatives and their value
at z0 = 0. Since these functions are analytic on C these series
converge for every z ∈ C. Similarly for cosh(z), sinh(z).

The Maclaurin series for tan(z) can be found but only
converges for |z | < π/2.



Example. Find the Taylor series of Log(z) about the point z0 = 2.
The function Log(z) has derivatives 1/z ,−z−2, 2 z−3, ... and in
general the m-th derivative is (−1)m−1 (m − 1)! z−m. If
z = x + iy , then (z − z0) = (x − 2) + iy and the Taylor series has
m-th term

f (m)(2)

m!
(z − 2)m

. Thus

Log(z) = ln 2 +
(z − 2)

2
− (z − 2)2

8
+

(z − 2)3

48
+ ...

This is a power series in (z − 2) and uses the fact that
Log(2) = ln 2 and all the derivatives of the function Log(z) are
real when z0 = x0 is a positive number.



There are other possible formulae for the coefficients in a
Taylor series (or expansion.) From the generalized Cauchy formula
one has

am =
f (m)(z0)

m!
=

1

2πi

∫
C

f (z)

(z − z0)m+1
dz

where C is a simple closed contour around z0 with f (z) analytic
inside C. Usually C is chosen to be a circle center z0 and of a small
radius.

The proof of the result about convergence of the Taylor
series on a disk of radius R about z0 when the function is analytic
on that disk, uses this expression and the generalized Cauchy
integral formulae. There also are integral formulae for the error
term in approximating an analytic function by a Taylor polynomial
of the specific order m ≥ 1.



The other major result is that if Tm(f ) is the Taylor
polynomial of order m that approximates f (z) near z = z0, and f is
differentiable on a disk BR(z0), then the Taylor polynomial of
degree (m-1) that approximates f ′(z) near z0 is the derivative of
Tm(f ). That is you can differentiate term by term and the new
series converges. It says that if

f (z) = c0 + c1(z − z0) + c2(z − z0)2 + ...+ cm (z − z0)m + ...

and this series converges, then

f ′(z) = c1 + 2c2(z − z0) + ..+ mcm(z − z0)m−1 + ...

and this series converges.



The above theorems say that if we know the values of an
analytic function and all of its derivatives at a point z0, then we
know the function in a disk center at that point - provided the
Taylor approximations converge to a function there.

In general there is a value R called the radius of convergence
of this series such that the series

(i) converges in the disk |z − z0| < R, and
(ii) does not converge when |z − z0| > R.
R is called the radius of convergence and could be 0. It will

be ∞ for an entire function. It can be proved that, if these limits
exist,

R = lim
n→∞

|an|
|an+1|

, or

R−1 = lim
n→∞

|an|1/n

using the ratio test or the root test respectively.



Another very useful result is the following. Suppose that a
power series

∞∑
n=0

an (z − z0)n

converges at a point z1 6= z0 with R1 = |z1 − z0|.
Theorem Suppose this power series converges at z1 and
R1 = |z1 − z0|. Then the series converges at every point z obeying
|z − z0| < R1 and the sum is an analytic function on this disk of
radius R1.



Example. The function f (z) = z
1+z2

has the Maclaurin
series about z = 0 given by

f (z) = z − z3 + z5 − z7 + . . . .

You can verify that this series gives the value of the function at
z = 1/2 to 3 decimal places with about 5 terms of the series.

Find the radius of convergence of this series and evaluate the
partial sums at z = ±1,±i . You could also find its Taylor series
about any other z0 6= ±i . Try z0 = ±1.



Integral Tests for convergence of series

Sometimes a simple method for finding whether a series converges
is to use a comparison test with specific integrals. Consider

S :=
∞∑
n=1

an or S(z) :=
∞∑
n=1

an(z)

Suppose that there is a positive decreasing function ϕ(t) defined
for 1 ≤ t <∞ that interpolates the values of |an| or |an(z)|. That
is ϕ(n) = |an(z)|. Then from the definition of a Riemann integral

∞∑
n=1

an+1 ≤
∫ ∞
1

ϕ(t) dt ≤
∞∑
n=1

an

So if you can evaluate this integral you have an lower and upper
bounds on the sum of these series.



Zeroes of Complex Functions

Suppose D is a domain and f : D → C is an analytic
function. If z0 ∈ D is a point with f (z0) = 0, then z0 is said to
be a zero of f on D. z0 is said to be a simple zero of f on D if
f ′(z0) 6= 0.

When z0 is a simple zero then the Taylor series of f is

f (z) =
∞∑
k=1

ak (z − z0)k = (z − z0)
∞∑
k=1

ak (z − z0)k−1

where the coefficients ak are the Taylor coefficients and a1 6= 0.
That is f (z) = (z − z0) f1(z) for z near z0 and f1(z) is an
analytic function on a disk BR(z0) and f1(z0) 6= 0. This is called a
factorization of f near z0.

When f is a polynomial of degree M, then f1 will be a
polynomial of degree M − 1.



More generally z0 is a zero of order m provided
f (k)(z0) = 0 for 0 ≤ k ≤ m − 1 and f (m)(z0) 6= 0. In this
case the Taylor series of f is given by

f (z) =
∞∑

k=m

ak (z − z0)k = (z − z0)m
∞∑

k=m

ak (z − z0)k−m

where the coefficients am are the Taylor coefficients, so am 6= 0.
That yields the factoziation f (z) = (z − z0)m f1(z) for z near
z0 with f1(z) an analytic function on a disk BR(z0) and f1(z0) 6= 0.
When f is a polynomial of degree M, then f1 will be a polynomial
of degree M −m and z0 is said to be a zero of multiplicity m of f .

When every derivative of f at z0 is zero then the Taylor series
of f (z) will be identically zero on any disk centered at z0, so
f (z) ≡ 0 on this disk.



Singularities of Complex Functions

Suppose f (z) is analytic on a domain D0 := D\ {z0} where
z0 ∈ D . Then z0 is a singularity of f of D if the limit of f (z) as
z → z0 and z ∈ D0 does not exist. Examples include

1. f (z) :=
C

(z − z0)4
with C 6= 0,

2. f (z) := p(z)
q(z) where p, q are polynomials in z and z0 ∈ C

with q(z0) = 0, p(z0) 6= 0.
3. f (z) := exp(−1/z2) for z 6= 0.



Suppose z0 is an isolated singularity of an analytic function
f (z), then
(i) z0 is a pole of order k for f (z) provided there is a nonzero
complex number bk and a k ∈ N such that

lim
z→z0

(z − z0)k f (z) = bk ( 6= 0).

(ii) z0 is an essential singularity of f (z) when it is a singular
point but these limits do not exist for any integer k.

The preceding example 1 has a pole of order 4 at z0. The
second example has a pole of order m at z0 when z0 is a zero of
order m of q and p(z0) 6= 0.



The function f (z) := exp(−1/z2) for z 6= 0 has an
essential singularity at the origin. From the series for the
exponential function, this is given formally by

f (z) = 1− 1

z2
+

1

2 z4
− 1

3! z6
− 1

4! z8
+ . . .

Sometimes a function is said to have a removable singularity if it is
defined by a formula that appears to make f (z0) bad, but
limz→z0 f (z) = c is finite. In this case make sure that f (z0) = c .

We have seen that when z0 is a zero of order M of an
analytic function f(z), then for z near z0, the Taylor series can be
factored to have a simple form. A similar result holds near poles of
order k of a function.



Laurent Series

Suppose f (z) is an analytic function on an annular domain
A := {z : r1 < |z − z0| < r2} (If r1 = 0 this is called a deleted disk;
when r1 > 0 this is a open annulus.)

In this case the function can be written as the sum of two
power series, one in powers of (z − z0) and the other in powers of
(z − z0)−1. Then

f (z) =
∞∑

k=−∞
ck(z − z0)k for z ∈ A

This series converges everywhere in A with the ck being

ck :=
1

2πi

∫
C

f (z)

(z − z0)k+1
dz

Here k is any positive or negative integer and C is any simple
closed contour in A that goes around z0.



Consider the complex function f (z) := z−1. This function
has a simple pole at z = 0 with a 1-term Laurent series around
the origin z = 0.

For any z0 6= 0, this is analytic function on the ball BR(z0)
with R < |z0|. It has derivatives

dk f

dzk
(z) = (−1)k

k!

zk+1

so there is a convergent Taylor series for 1/z around every
z0 6= 0. (Write it out!).

Similarly consider the finite geometric sum

f (z) := 2 +
1

z
+

1

z2
+ . . .+

1

zm



This function has a pole at z = 0 and you can verify that

f (z) =
2zm+1 − zm − 1

zm+1 − zm

Here the denominator is

zm+1 − zm = zm (z − 1).

so you may think that both 0 and 1 are poles. However
f (1) = m + 2 so 1 is not a pole, and f(z) is analytic near z = 1 so
this function has a Taylor series in powers of (z-1).

The functions cosec z, cot z have simple poles at z = 0
with Laurent series representations in deleted disks around 0 with
R < π.



Complex Infinity

The function f (z) = 1/z maps circles of radius r(> 0) around the
origin into circles of radius 1/r . In particular it maps the positively
oriented unit circle into a negatively oriented unit circle. It maps
the positive (or negative) real axis into itself, but the positive
imaginary axis into the negative imaginary axis. (Please verify
these claims!)

Thus w = f (z) = z−1 is 1-1 and onto from C\{0} to
itself. The inverse function is z = 1/w so f −1(w) = f (w) for all
w ∈ C\{0}. As a consequence we define limits of functions as
z →∞ by

lim
z→∞

f (z) := lim
w→0

f (1/w) whenever this RHS exists.



Example. Consider the rational function fk(z) = zk/(1 + z2).
This function has poles at z = ±i , is zero at the origin and is
analytic elsewhere in C. It is bounded on the real axis when
k = 0, 1, 2 and unbounded when k ≥ 3. You can show that

lim
z→∞

fk(z) = 0 for k = 0, 1 and 1 when k = 2.

In particular we say that f (z) is analytic near ∞ provided
g(w) = f (1/w) is analytic near w = 0.

f (z) has a zero of order m at infinity if g(w) has a zero of
order m at w = 0.

f (z) has a pole of order m at infinity if g(w) has a pole of
order m at w = 0.

f (z) has an essential singularity at infinity if g(w) has an
essential singularity at 0.



Examples 1. The function defined by f (z) = (z − a)−m has a
zero of order m at ∞.

2. The exponential function (or sinh z , cosh z , sin z) have
essential singularities at ∞.

3. What can you say about the behavior at infinity of the
function fk above with k ≥ 2?



The Riemann Sphere and Infinity

Geometrically the set C = C ∪ {∞} may be visualized as
points on the Riemann sphere. This is a sphere in 3d with center
(0, 0, 1/2) and radius 1/2. The north pole is at (0, 0, 1) and the
south pole at the origin.

Draw the straight lines from the north pole through the
sphere and identify points on the sphere with the complex number
z = x + iy - the point where the straight line intersects the
horizontal plane x3 = 0. Points in the upper hemisphere are related
to points outside the unit disk, points on the equator are mapped
to points on the unit circle in C and points in the southern
hemisphere are mapped to points inside the unit disk.

The point at ∞ will be identified with the North pole. This
is called the stereographic projection. Since this provides a 1-1
mapping of C with this sphere, we say that the sets are isomorphic
under this mapping (or function).



The Riemann Zeta Function

The Riemann zeta function is defined for Re(z) > 1 by the series

ζ(z) :=
∞∑
n=1

1

nz

When z = s + iy then |n−z | = e−s ln n = n−s . ( Check this out.)
Then the integral inequality yields

|ζ(z)| ≤
∞∑
n=1

n−s ≤ 1 +
1

s − 1
=

s

s − 1

when Re(z) = s > 1. When s = 1 the series diverges.
This function is one of the most studied functions in

mathematics.



In other undergraduate classes, you may see proofs that
ζ(2) = π2

6 and various formulae for the sum. In particular
ζ(3) = 1.20205 . . . is called Apery’s constant who proved in
1978 that it is an irrational number. (See Wikipedia).

The function has a pole at z = 1 and can be defined (using
different formulae) for all other complex numbers. (The same
function is given by different formulae in different domains).

The Riemann hypthesis (1859) is still an open problem
with a one million dollar ++ prize for whoever proves or disproves
it. It asks whether all the non-trivial zeroes of ζ(z) lie on the line
<(z) = 1/2? See Wikipedia for a long article about the problem
that describe many different results about the zeroes. Evaluating
this function is a major test problem for computers and, now,
networks.


