
Complex Numbers and Functions

In the first three weeks of the class we have covered much of the
material in Chapters 1 through 3 of the textbook. You should
understand and be able to use

1. Complex numbers and complex arithmetic, polar form, |z |,
arg z.
2. The definitions of various types of subsets of C, (open,
closed, connected, bounded, boundary domain and region).
3. Limits and convergence of a sequence, continuity of a
function, rules for sums, products , quotients and compositions.
4. Differentiability of a function, Cauchy-Riemann equations and
harmonic functions. Harmoic conjugate function.
5. Complex Polynomials, Exponential, Trigonometric and
Hyperbolic functions.
6. Roots of unity, Complex Logarithms and Powers.



In particular chapter 2 of the text concentrated on the
definition and properties of differentiable (= analytic) complex
functions. Chapter 3 studied the exponential function and showed
that - in terms of complex z - the exponential, trigonometric and
hyperbolic functions all are related.

Most of this theory is quite similar to the theory of
2-dimensional calculus. Chapter 4 of the text book treats the
complex integration. Here we will treat integrals that are line
integrals in the complex plane and the theory is quite unlike what
holds in previous courses.

First we need the definitions for complex integration. Then
these definitions will be used to obtain formulae and results that
are used throughout science and engineering.



Using complex inetgrals, many new analytic functions such
as Bessel functions, Legendre functions, rational functions, gamma
and zeta functions are defined and their properties established.

The definitive online source for this is Digital Library of
Mathematical Functions at dlmf.nist.gov/4.2 Essentially all
the material in the first 25 sections (chapters) involves analytic
functions; also sections 28-33. DLMF is the online successor to the
Handbook of Mathematical Functions, edited by Abramowitz
and Stegun, and published in 1964, which was for more than 50
years one of the most cited books in science. It is over 1000 pages
long and has always been legally available for free download on the
web.



Integrals of complex functions

When f (t) is a complex valued function of a real variable with
f (t) = u(t) + iv(t), then the integral∫ b

a
f (t) dt :=

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt

is a complex number whose real and complex parts are the
integrals you had in Calculus I.

They have the same properties as ordinary integrals with, in
particular, ∣∣∣∣ ∫ b

a
f (t) dt

∣∣∣∣ ≤ ∫ b

a
|f (t)| dt



Complex Integration

Chapter 4 of the text is about complex integration. The
main results in this chapter are Cauchy’s integral theorem which
says that a lot of complex (line) integrals are zero and Cauchy’s
integral formula which says that f (z0) is equal to a special integral
of f (z) around z0.

This leads to many theorems about analytic functions -
including useful formulae and inequalities - and the fundamental
theorem of algebra. The integrals are primarily contour integrals
of the form∫

Γ
f (z) dz where Γ is a piecewise smooth curve

in the complex plane and f (z) is a complex function defined on Γ.
This integral should be a complex number.



How to define this integral? In elementary integration, you
evaluate integrals over an interval (a, b). In 2d calculus there are
integrals over domains D in the plane with respect to area dxdy .
Contour integrals are similar to line integrals from calculus 3.

A curve (or arc) in the complex plane is the range of a
complex function defined on an open or closed interval I ⊂ R.
That is if ζ : I → C is a continuous function then

Γ := { ζ(t) : t ∈ I }.

When I = [a, b] is a closed interval then ζ(a), ζ(b) are
called the end-points of the curve. If ζ(a) = ζ(b), then Γ is said
to be a loop or a closed curve. Occasionally a single point z0 is
called a loop - defined by the function ζ : [0, 1]→ C with
ζ(t) = z0 for all t.



When a smooth curve is parametrized by a function ζ then
the arc-length of the curve can be evaluated. The distance of a
point ζ(t) = x(t) + iy(t) from the initial point z0 = ζ(a) is

s(t) :=

∫ t

a
|ζ̇(τ)| dτ.

This s(t) is called the arc-length of ζ(t) from z0 along Γ and

ds

dt
(t) = |ζ̇(t)| =

√
ẋ(t)2 + ẏ(t)2 > 0

The length of Γ is

|Γ| = L(Γ) :=

∫ b

a
|ζ̇(t)| dt.



Example: An ellipse center at the origin and with semi-axes a, b
has the parametric form

ζ(θ) := a cos θ + i b sin θ 0 ≤ θ ≤ 2π

This is a simple loop The length of the arc of this ellipse between
z0 = a and z1 = i b corresponds to the arc going from θ = 0 to
θ = π/2 so has length

L(Γ) :=

∫ π/2

0

√
a2 sin2 θ + b2 cos2 θ dθ.

The perimeter of the ellipse is 4 times this value and the area inside
the ellipse is π a b. This is an elliptic integral which does not have
a simple expression in terms of functions you have seen when a 6= b



Suppose that we choose a grid G := {z0, z1, . . . , zM} of
consecutive points on Γ from z0 = ζ(a) to zM = ζ(b). Then

IG (f ) :=
M−1∑
j=1

f (ζj) (zj+1 − zj) with ζj ∈ (zj , zj+1)

is a Riemann sum for this integral contour integral. Let
hG := maxj |zj+1 − zj | be the grid mesh. Then

IΓ(f ) :=

∫
Γ

f (z) dz := lim
hG→0

M−1∑
j=0

f (ζj) (zj+1 − zj)

This limit should be a complex number.



A curve Γ is self-intersecting if there are distinct values t1, t2

in I that are not both end points and such that ζ(t1) = ζ(t2). If a
curve is not self-intersecting then the function ζ is 1-1 - except
possibly at the end-points if it is a loop.

The curve Γ is said to be a directed smooth curve (or arc)
when it is defined by a function ζ : [a, b]→ C and

(i) Γ is not self-intersecting,
(ii) ζ̇(t) is non-zero, finite and continuous on I := [a,b].

Here ζ̇(t) := ẋ(t) + i ẏ(t) is the usual (1-d) derivative
with respect to t. In particular a curve has a direction; it goes
from ζ(a) to ζ(b). ζ provides a parametrization of Γ. The same
curve can have different parametrizations.



When f , g are continuous complex functions defined on a
directed smooth curve (contour) Γ of finite length, the contour
integral

∫
Γ (f ) will be a complex number. They obey the usual

rules including Linearity∫
Γ
[c1 f1(z) + c2 f2(z)] dz =

∫
Γ
c1 f1(z) dz +

∫
Γ
c2 f2(z) dz

Triangle inequality: If |f (z)| ≤ M on Γ, then∣∣∣∣ ∫
Γ
f (z) dz

∣∣∣∣ ≤ M L(Γ).

Orientation: Let −Γ be the curve in the reverse direction from
ζ(b) to ζ(a). Then∫

− Γ
f (z) dz = −

∫
Γ
f (z) dz



Example: Let z0 ∈ C and C be the circle of center z0 and radius r.
Find the integrals

∫
C (z − z0)n dz with n ∈ Z.

First choose a parametrization of C such as
ζ(θ) := z0 + r e iθ for 0 ≤ θ ≤ 2π. This is a regular arc and a
loop. On C , f (ζ(θ)) = rn e inθ . Thus∫

C
(z − z0)n dz =

∫ 2π

0
irn+1 e i(n+1)θ dθ

When n 6= −1, this integral with respect to θ is zero.
When n = −1 one finds that∫

C

1

z − z0
dz = 2π i

so this integral is independent of r!



Very often we wish to work with curves that are not smooth
curves - but have ”corners”. For example triangles, rectangles,
polygons or similar sets.

Suppose we have a finite number of smooth curves
γ1, . . . , γn where the initial point of the component γj+1 is the
final point of the component γj for 1 ≤ j ≤ n − 1 .

Then Γ := (γ1, . . . , γn) is called a contour from the initial
point of γ1 to the final point of γn. In particular a contour has an
orientation and −Γ is the same set but with the reverse ordering.
All the preceding rules for evaluating integrals hold when contours
are used in place of arcs.



Above we showed that the integral of a power function like
(z − ζ)m is zero around any circle centered at ζ when m 6= −1. It
turns out that such integrals are very often zero when the
function f(z) is analytic around Γ.

Cauchy -Goursat Theorem Suppose a function f (z) is analytic
on and inside a simple closed contour C . then∫

C
f (z) dz = 0

Suppose that a function f (z) is analytic in a region D, z0, z1

are two points in D and C1,C2 are two curves from z0 to z1 that
lie in D. Then the curve obtained by joining −C2 to C1 (or -C1 to
C2) is a close loop in D. So∫

C1

f (z) dz =

∫
C2

f (z) dz



Another way of saying this is that when f (z) is analytic in a
region D, z0, z are points in the region, then the integral

F (z) :=

∫ z

z0

f (z) dz =

∫
C

f (z) dz

for any curve C that goes from z0 to z and remains in D. That is
this indefinite contour integral is independent of the path from z0

to z!

This integral may be defined for all z ∈ D so F is a complex
valued function on D. The text has a problem that asks you to
show that this function is differentiable (or analytic) on D and that

F ′(z) =
dF

dz
(z) = f (z) for all z ∈ D.



A simple loop is positively oriented if you go around it
clockwise. It is negatively oriented when you go around it
anticlockwise.

The boundary of a domain D ⊂ C consists of some closed
loops and possibly some isolated points. When the domain D
consists of all points inside a simple closed loop, D is said to be
simply connected or not have any ”holes”.

Suppose D is the set of points inside a simple closed loop C0

but outside a finite number of simple closed loops C1, . . . ,CJ (that
don’t intesect each other or C0). Then the domain D is said to be
multiply connected and the boundary has J+1 connected
components. In his case the domain has J ”holes”.

Many results about complex integrals in this class will be
stated only for integrals in domains that are simply connected.
There are associated formulae for contour integrals in multiply
connected regions but they need some rules about ”winding
numbers”.



Cauchy’s Integral Formula

Let D be the simply connected domain inside a simple closed
positively oriented loop C, If f is analytic on domain D, then the
values of f in D are given by a contour integral. Namely

f (z0) =
1

2πi

∫
C

f (z)

z − z0
dz for z0 ∈ D

That is, the value of an analytic function at a point z0 inside
a loop C can be found by knowng the value of this integral along a
contour around the point. When one knows the values of an
analytic function on a circle or a rectangle or a general polygon in
the complex plane, then this Integral formula gives the value of the
function at any point inside the loop.



Generalized Cauchy’s Integral Formula

Let D be the simply connected domain inside a simple closed
positively oriented loop C, If f is analytic on domain D, then the
values of the k-th derivative f (k)(z) at a point z in D is given by a
contour integral. Namely

f (k)(z0) =
k!

2πi

∫
C

f (z)

(z − z0)k+1
dz for z0 ∈ D

Since each of these integrals can be evaluated and is finite,
this formula is the basis of the usual proof that if f (z) is analytic
inside and on the loop C then all its derivatives exist and are finite
at points inside C.



The result that is used to prove the Generalized Cauchy
Integral Formula is that if Γ is a regular arc of finite length, and a
complex function g is continuous on the arc, then the function

G (z) :=

∫
Γ

g(ζ)

ζ − z
dζ

is analytic at any point z /∈ γ. Moreover

G ′(z) =
dG

dz
(z) =

∫
Γ

g(ζ)

(ζ − z)2
dζ

G ′′(z) =
d2G

dz2
(z) = 2

∫
Γ

g(ζ)

(ζ − z)3
dζ

. . . and all these integrals are complex numbers. This is called
”differentiation under the integral sign”.



Examples Evaluate the following integrals around a closed loop
C of your choice. Say what loops will make the integrals zero - or
not. ∫

C

sin z

z
dz

∫
C

sin z

2z − π
dz∫

C

z3 + z − 1

(2z − 4)2
dz

∫
C

e−2z

z4
dz

When you see integrals of fractions where there are
polynomials or other simple functions in the denominator, look to
see where this denoiminator is zero. These are the ”singularities”
and integrals on loops around the singular points may be non zero.



Bounds on Functions and Derivatives.

The importance of the Cauchy integral formulae is that when
we know an analytic function on a contour Γ then you can evaluate
it at any point inside the contour - by evaluating a contour integral.
This allows one to also find bounds on the values of the function.

Suppose that a function is analytic on the circle CR center
z0 and radius R. Suppose that |f (ζ)| ≤ M for ζ ∈ CR . Then
|f (z)| ≤ M inside CR and Cauchy’s integral formula says that

|f ′(z0)| ≤ M

R
and

| f (k)(z0) | ≤ M k!

Rk
.



A function f on C is said to be entire provided it is analytic
for all z.

Theorem (Liouville) If an entire function is bounded on C, then
it is constant on C.

Suppose now that p(z) is a polynomial of degree n. That is

p(z) := a0z
n + a1z

n−1 + . . .+ an−1z + an

with a0 6= 0 and each aj ∈ C. Then

lim
|z|→∞

p(z)

zn
= a0.

A basic question in algebra has been how do you find the
zeros of p(z). That is to find the solutions of p(z) = 0.

Are there formulae for these zeroes? Yes for n = 2, 3, 4. No
for n ≥ 5.



The Fundamental Theorem of Algebra.

Theorem A complex polynomial of degree n has a complex zero.

Suppose ζ1 is a complex zero, then

p(z) = (z − ζ1)(a0z
n−1 + b1z

n−2 + . . .+ bn−2z + bn−1

where you can evaluate the new coefficients bj . Try to find the
formulae for them!

Thus p(z) = (z − ζ1)q1(z) with q(z) a polynomial of
degree (n − 1) and leading coefficient a0 6= 0. Apply the theorem
again to find a second zero ζ2 and p(z) is the product of two
factors (z − ζ1)(z − ζ2) q2(z) with q2 a polynomial of degree
(n − 2). Continue until you have a product of n simple factors
(z − ζj) - so the ζj will be the zeroes of the polynomial p(z). This
is called factoring a polynomial.



A zero ζj of p(z) has multiplicity m if p(z) = (z − ζj)mq(z)
with q(ζj) 6= 0. Then there will be at most n distinct complex
zeroes of p(z) and the number of zeros counting multiplicity is n.

Example Factor p(z) = z4 − 2z3 + 2z2 − 2z + 1 and determine
the number of distinct zeros and their multiplicity.



Sequences of Complex Numbers

A sequence is an infinite set {zm : m ≥ 1} indexed by the positive
integers. They are sequences of complex numbers if each zm is a
complex number.

Usually we are interested in sequences that converge to a
specific (complex) number. For example you can show that for
most choices of z1 the sequence defined by

zm+1 :=
1

2

(
zm +

a

zm

)
m = 1, 2, 3, . . .

converges to one of the two numbers ±
√
a when a ∈ C.

Example If a = 3, z0 = 1, then you obtain

1, 2,
7

4
,

97

56
= 1.73214286, . . .

A calculator gives
√

3 = 1.732050808 . . ..



This algorithm holds even for complex numbers such as
finding the square root of a := 1 + i =

√
2e iπ/4. You find an

infnite sequence of complex numbers that will converge to
√
a

from z0 = 1 or 1 + i .

Similarlly the set of numbers defined by

z1 = 1, zm+1 := zm +
(−1)m+1

2m − 1
m ≥ 1

defines a sequence of rational numbers that converges very slowly
to the number π/4. It takes M = 200 to have the answer to 2
decimal places and 5 billion iterations to obtain π to 10 decimal
places. Here

z7 = 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13



The sequence is said to converge to a limit ζ provided that
for any choice of ε > 0, there is an M(ε) such that

m > M(ε) ⇒ |zm − ζ| < ε.

That is every zm wih m large enough is within a distance ε of the
limit ζ.

Often take ε = 10−d and this M tells you how many terms
are required to obtain numbers that are correct to d decimal places.

In complex analysis we are mostly interested in limits of
polynomials and functions.



Geometric Sums and Series.

The geometric sum of degree M is the expression

sM(z) := 1 + z + z2 + . . .+ zM .

This is computable with sm(0) = 1, sM(1) = M + 1 and

sM(z) :=
zM+1 − 1

z − 1
for z 6= 1

What happens as M →∞? When |z | ≥ 1, then this sum has no
limit as M →∞

Observe that if |z | = r < 1 then |z |M → 0 as M →∞.
Check this out computationally. Find out how large M must
be for |rM | ≤ 0.5 × 10−5 for r = 0.2, 0.4, 0.5, 0.7, 0.9? Find
a formula for this M.



In general when {c0, c1, . . . , cm, . . .} is an infinite sequence
of complex numbers, then

sm :=
m∑
j=0

cj = c0 + c1 + . . .+ cm

is called the m-th partial sum of these numbers. If the sequence
{s0, s1, . . . , sm, . . .} of complex numbers converges to a limit
S ∈ C, then S is called the sum of the infinite series. We write

S := lim
m→∞

sm =
∞∑
j=0

cj

Examples include

e = 1 +
∞∑
j=1

1

j!

This series converges very quickly as j! grows very rapidly.



There are many ”tests” for the convergence of complex
series.

The comparison test says that the series
∑∞

j=0 cj
converges provided there is a sequence of positive real numbers Mj

such that |cj | ≤ Mj for all j and
∑∞

j=0 Mj converges.

The ratio test says that the series
∑∞

j=0 cj converges if

lim
j→∞

∣∣∣∣ cj+1

cj

∣∣∣∣ = L < 1.

If L > 1 then the series diverges.



In your first calculus course you should have heard about
Taylor approximations of functions and Taylor series. These have
especially good properties when the functions is an analytic
function on a domain D ⊂ C.

Suppose z0 ∈ D then the linear approximation to f (z) near
z0 is the linear function

T1f (z) := f (z0) + f ′(z0) (z − z0)

The quadratic approximation is

T2f (z) := f (z0) + f ′(z0) (z − z0) +
f ”(z0)

2
(z − z0)2

In general the m-th Taylor approximation is the polynomial of
degree m defined by

Tmf (z) := Tm−1f (z0) +
f (m)(z0)

m!
(z − z0)m.



When f is analytic on D, then it is infinitely differentiable at
each point in D and the Taylor series of f at given by

Tf (z) := lim
m→∞

Tmf (z) =
∞∑

m=0

f (m)(z0)

m!
(z − z0)m.

Ex: f (z) := Log(1 + z) is analytic on a disk of radius 1 centered
at z=0 , with Log(1) = 0. Then

T3f (z) = z − z2

2
+

z3

3

and the Taylor series of Log(1 + z) is

∞∑
m=1

(−z)m

(m)!
= z − z2

2
+

z3

3
− z4

4
+ . . .



Each of the Taylor approximations Tmf (z) is an entire
function on C but the Taylor series will only converge to
Log(1 + z) when |z | < 1. It does not converge when z = −1.
The sequence of approximations has Tmf (−1)→ −∞ as m→∞
Theorem. Suppose that f (z) is analytic on the disk BR(z0),
then the Taylor polynomials Tmf (z) converge to f (z) as m→∞
for all z ∈ BR(z0).

Corollary. Suppose that f (z) is an entire function, then the
Taylor polynomials Tmf (z) converge to f (z) as m→∞ for all
z ∈ C.



Examples of Maclaurin Series include

1. ez = 1 +
∞∑
j=1

z j

j!
.

= 1 + z +
z2

2!
+

z3

3!
+ . . . .

2. sin z =
∞∑
j=1

(−1)j−1 z2j−1

(2j − 1)!
.

= z − z3

3!
+

z5

5!
− z7

7!
+ . . . .

3. cos z = 1 +
∞∑
j=1

(−1)j
z2j

(2j)!
.

= 1− z2

2!
+

z4

4!
− z6

6!
+ . . . .

Since these functions are entire these series converge for
every z ∈ C. Similarly for cosh(z), sinh(z). The Maclaurin series
for tan(z) can be found but only converges for |z | < π/2.



General Power Series

Given an infinite sequence of complex numbers
{a0, a1, . . . , aj , . . .}, and z0 ∈ C the infinite series

∞∑
n=0

an (z − z0)n

is called a power series (in (z − z0) or about z0).

When only a finite number of the an are non-zero this is a
polynomial. If there is a number δ > 0 and infinitely many an with
|aj | ≥ δ then this series does not converge for any z 6= z0.

So a necessary condition for a series to converge is that
limn→∞ |an| = 0.



In the text of Kwok, he states results about absolute
convergence - which is stronger than convergence. In this class we
will not work with functions that are convergent but not absolutely
convergent or be concenred with the difference.

Suppose that a power series

∞∑
n=0

an (z − z0)n

converges at a point z1 6= z0 with R1 = |z1 − z0|.
Theorem Suppose the series converges at z1 and R1 = |z1 − z0|.
Then the series converges at every point z obeying |z − z0| < R1

and the sum is an analytic function on this disk of radius R1.



In general there is a value R called the radius of convergence
of this series such that the series

(i) converges in the disk |z − z0| < R, and
(ii) does not converge when |z − z0| > R.

R is called the radius of convergence and could be 0. It will
be ∞ for an entire function. It can be proved that, if these limits
exist,

R = lim
n→∞

|an|
|an+1|

, or

R−1 = lim
n→∞

|an|1/n

using the ratio test or the root test respectively.



This shows that power series in (z − z0) define analytic
functions that converge on disks or radius R around z0. Conversely
when f (z) is analytic on a disk near z0, its Taylor series will
converge inside the disk. That is

f (z) = lim
N→∞

N∑
n=0

an (z − z0)n, when |z − z0| < R

and an := f (n)(z0)/n!. A Maclaurin series is a Taylor series with
z0 = 0. The function f (z) = z

1+z2 has the Maclaurin series
about z = 0 given by

f (z) = z − z3 + z5 − z7 + . . . with R = 1.

You can verify that this series gives the value of the function at
z = 1/2 to 3 decimal places with about 5 terms of the series.



You could also find its Taylor series about any other z0 6= ±i
Try z0 = ±1.

There are other possible formulae for the coefficients in a
Taylor series (or expansion.) From the generalized Cauchy formula
one has

an =
f (n)(z0)

n!
=

1

2πi

∫
C

f (z)

(z − z0)n+1
dz

where C is a simple closed contour around z0 with f (z) analytic
inside C. Any choice of C is ine so usually it is just a circle.



Isolated Singularities

Many of the functions that occur here are analytic in a domain
D\ {z0} where z0 is “surrounded” by D. In this case z0 is called a
singularity of the analytic function f on D. the typical examples
are

f (z) :=
c

(z − z0)k
, k ∈ N

Another example would be a function such as
f (z) := exp(−1/z2) for z 6= 0. From the series for the
exponential function, this is given formally by

f (z) = 1− 1

z2
+

1

z4
− 1

z6
− 1

z8
+ . . .



Suppose z0 is an isolated singularity of an analytic function
f (z), then
(i) z0 is a pole of order k for f (z) provided there is a nonzero
complex number bk and a k ∈ N such that

lim
z→z0

(z − z0)k f (z) = bk .

(ii) z0 is an essential singularity of f (z) when it is a singular
point but the above limit does not exist for any positive integer k.

The function f (z) := exp(−1/z2) for z 6= 0 has an
essential singularity at the origin. Sometimes we say a function has
a removable singularity if it is defined by a formula that appears to
make f (z0) bad, but really the limz→z0 (z − z0) f (z) = b is finite.



Laurent Series

Suppose f (z) is an analytic function on an annular domain
A := {z : r1 < |z − z0| < r2} (If r1 = 0 this is called a deleted disk;
when r1 > 0 this is an annulus.)

In this case the function can be written as a power series in
both (z − z0) and (z − z0)−1 so that

f (z) =
∞∑

k=−∞
ck(z − z0)k for z ∈ A

This series converges everywhere in A and the coefficients
are given by

ck :=
1

2πi

∫
C

f (z)

(z − z0)k+1
dz

where k is any positive or negative integer and C is any simple
closed contour in A that goes around z0.


