
Complex Analysis

For the fall 2020 midterm exam, the material covered many
of the basic results about complex numbers, and the properties of
differentiable complex functions. Then a number of weeks were
spent on the theory of contour integrals, the Cauchy-Goursat
theorem, the Cauchy integral formula and its generalizations and
related results.

The theory of Taylor and Laurent approximations of
functions was then described - but was not on the exam. Now we
shall describe various applications and further results about
analytic functions on domains in C. First we shall describe more
results about complex polynomials and the solutions of polynomial
equations.



Finding solutions of Polynomial Equations

One of the oldest problems in mathematics was to find
solutions of equations of the form

zn + a1z
n−1 + a2z

n−2 + . . .+ an−1z + an = 0

Here n is called the degree of the polynomial.

Here the coefficients a1, . . . an may be required to be
rational, real or general complex numbers. A real number ẑ is said
to be an algebraic number if it is a solution of an equation of this
form with each aj rational.

The numbers π, e and many others are known not to be
algebraic numbers, but the numbers

√
2,
√

3 are algebraic but not
rational numbers. There are explicit formulae for the solutions fo
equations of degree 2, 3 and 4 but Galois proved there was no
formula for some polynomials of degree 5 of more.



The importance of complex numbers is that if the
coefficients of a polynomial are complex numbers, a polynomial
equation has n complex solutions - if you count appropriately. This
is the Fundamental theorem of Algebra.

We shall prove this and study various related results. First
we shall write

p(z) := zn + a1z
n−1 + a2z

n−2 + . . .+ an−1z + an

and observe that this is an analytic function of z on C. It has
derivatives of all orders and the k-th derivative p(k)(z) will be a
polynomial of degree n − k in z for 1leqsk ≤ n and its is
identically zero for k > n.



One place where one obtains polynomial equations is in
finding eigenvalues of an n × n real or complex matrix A. The
eigenvalues will be the solutions of the equation

det(λIn − A) = 0

This will be a polynomial equation with a1 = −trA, an = −detA.

Similar polynomial equations often arise in engineering and
in finance in connection with iterative processes and growth.



First we shall show how to reduce the order of a polynomial
when one knows a zero. Suppose that ζ is a solution of p(z) = 0
then we want to find the polynomial q(z) such that

q(z) := zn−1 + b1z
n−2 + b2z

n−3 + . . .+ bn−2z + bn−1, and

p(z) := (z − ζ) q(z).

The formulae for the coefficients bj in terms of the aj is that

b1 = a1 + ζ and bj = aj + ζ bj−1 for 2 ≤ j ≤ n − 1.

One also must have an = −ζ bn−1.

This is proved by multiplying out the expression (z − ζ) q(z)
and equating coefficients.



These equations are usually solved recursively. That is given
ζ, evaluate b1, b2, b3, . . . , bn−1 in order from these equations.
Alternatively use the last formula for bn−1 and then determine
bn−2, . . . , b1 in reverse order.

This is a linear system of n − 1 equations for the bj in terms
of the aj .

I suggest that you write this as a matrix equation Lb = a
where a, b are column vectors involving the aj , bj respectively.
Find the inverse L−1 of this matrix when n = 2, 3 and 4.



A function f on C is said to be entire provided it is analytic
for all z.

Such a function is analytic on every disk in the complex
plane so the bounds derived from Cauchy’s integral theorem lead
to the following famous theorem

Theorem (Liouville) If an entire function is bounded on C, then
it is constant on C.

When p(z) is a polynomial of degree n of the form

p(z) := a0z
n + a1z

n−1 + . . .+ an−1z + an

with a0 6= 0 and each aj ∈ C. Then

lim
|z|→∞

p(z)

zn
= a0.



Supppose that we now that every polynomial of degree n has
at least one complex zero. If we know one complex zero ζ1 then
the factorization algorithm yields

p(z) = (z − ζ1)(a0z
n−1 + b1z

n−2 + . . .+ bn−2z + bn−1

where you can evaluate the new coefficients bj .

Thus p(z) = (z − ζ1)q1(z) with q(z) a polynomial of
degree (n − 1) and leading coefficient a0 6= 0. Apply the theorem
again to find a second zero ζ2 and p(z) is the product of two
factors (z − ζ1)(z − ζ2) q2(z) with q2 a polynomial of degree
(n − 2). Continue until you have a product of n simple factors
(z − ζj) - so the ζj will be the zeroes of the polynomial p(z). This
is called factoring a polynomial.



A zero ζj of p(z) has multiplicity m if p(z) = (z − ζj)mq(z)
with q(ζj) 6= 0. Then there will be at most n distinct complex
zeroes of p(z) and the number of zeros counting multiplicity is n.

So to prove the fundamental theorem of algebra it suffices to
prove that every polynomial has one complex zero as we have just
shown that if that holds then it has n complex zeroes by repeated
factorization.

Example Factor p(z) = z4 − 2z3 + 2z2 − 2z + 1 and determine
the number of distinct zeros and their multiplicity.



The Fundamental Theorem of Algebra.

Theorem A complex polynomial of degree n has a complex zero.

This holds by using Liouville’s theorem on the function

F (z) :=
1

p(z)

If p(z) did not have a zero, the F (z) is an entire function on C.
So it must be a constant and p(z) must be constant. Thus degree
p = 0 which contradicts our assumption that degree p = n ≥ 1



The Calculus of Residues

Every text on mathematical physics has a section on the
calculus of residues because it is a way of finding formulae for loop
integrals of analytic functions that have a physical interpolation,
Often there is no other way of calculating quantities such as
circulation or the number of solutions of an equation except by
using the residue theorem. Even numerical methods can be tough.
(except maybe numerically).



First assume that we are given a function f (z) which is
analytic on a domain D and has a finite number of isolated
singularities at points S := {ζj : 1 ≤ j ≤ J} that are in D.

Suppose ζ is an isolated singularity of f (z) and f is analytic
on and inside a simple loop Γ except at the singularity ζ. Then
f (z) has a Laurent series representation in a neighborhood of ζ.
That is

f (z) = lim
M→∞

M∑
k=−M

ak (z − ζ)k

and this finite approximations will converge to f (z) on a deleted
disk A = {z : 0 < |z − ζ| < r} for r < R.



Let Γ be a simple positively oriented loop in A and C be a
positively oriented circle around ζ and inside Γ. Then the
homotopy theorem and a formula for integrating these functions
around a circle yield∫

Γ
f (z) dz =

∫
C
f (z) dz = 2π i a−1

since all the other loop integrals∫
C

(z − ζ)k dz = 0 when k 6= −1.

Thus the integral around Γ is given by∫
Γ

f (z) dz = 2π i a−1

for any function that is analytic in D\{ζ}.



The quantity a−1 is called the residue of f at ζ. It is a
particular coefficient in the Laurent approximation of f (z) near ζ.
and is denoted Res(f; ζ) .

When f (.) has a simple pole at ζ, then the residue is

Res(f ; ζ) = lim
z→ζ

(z − ζ) f (z)

In particular if f (z) = p(z)/q(z) and ζ is a simple zero of q(z),
then

Res(f ; ζ) =
p(ζ)

q′(ζ)

where q′(z) is the derivative of q(z).



Assume for simplicity that q(z) is a polynomial, then from
the factorization theorem one has

q(z) = (z − ζ) q1(z) with q1(ζ) 6= 0 so

lim
z→ζ

(z − ζ) f (z) = lim
z→ζ

p(z)

q1(z)
=

p(ζ)

q1(ζ)

as p, q1 are continuous at ζ and q1(ζ) 6= 0. This is the desired
formula for the residue as q′(ζ) = q1(ζ). If q(z) is analytic near ζ
but not a polynomial you use some properties of the Taylor
approximations to prove this still holds.

Similarly, when f (.) has a pole of order m at z0, then the
residue is

Res(f : z0) = lim
z→z0

1

(z − z0)m
dm−1

dzm−1
(z − z0)m f (z)



. Cauchy’s Residue Theorem

he calculus of residues is based on the following theorem which
gives the value of a contour integral when f (z) only has isolated
singularities inside Γ.

Theorem (Cauchy) Suppose Γ is a simple, positively oriented
loop (spol) and f (z) is analytic inside and continuous on Γ, except
at a finite number of isolated singularities at ζ1, . . . , ζJ inside Γ.
Then ∫

Γ
f (z) dz = 2π i

J∑
j=1

Res(f ; ζj)

Note that if there is only a single singularity inside Γ this is
just the Cauchy integral formula. The proof of this theorem is
based on showing that this integral equals the sum of the integrals
around the individual singularities. That is the value of this
integral is 2π i times the sum of the residues of f at its isolated
singularities.



Evaluation of some Trigonometric Integrals

Consider the problem of evaluating∫ 2π

0
g(cos θ, sin θ) d θ

where g is an analytic function on the square center 0 and sides of
length 2. The functions cos θ, sin θ are the values of the functions

f1(z) :=
1

2
(z + z−1) and f2(z) :=

1

2i
(z − z−1)

on the unit circle C. ... (Write down a formula for points in C and
substitute.) Define

G (z) :=
1

i z
g

(
1

2
(z + z−1),

1

2i
(z − z−1)

)



Example: Evaluate

I (a) :=

∫ 2π

0

d θ

2− a cos θ
with |a| < 2.

Here g(cos θ) = [2− (a/2) (z + z−1)]−1 . Let a = 1, then

I (1) =
2

i

∫
C

dz

4z − z2 − 1

where C is the unit circle. One has that

(z2 − 4z + 1) = (z − z+) (z − z−)

where z± := 2±
√

3. Thus z± are simple poles of this
integrand and only z− is inside the unit circle.

The residue of G at
z− is (−1)/(2

√
3) so one finds that

I (1) =
−4πi

i

−1

2
√

3
=

2π√
3
.



Example: Evaluate

I (a) :=

∫ 2π

0

d θ

2− a cos θ
with |a| < 2.

Here g(cos θ) = [2− (a/2) (z + z−1)]−1 . Let a = 1, then

I (1) =
2

i

∫
C

dz

4z − z2 − 1

where C is the unit circle. One has that

(z2 − 4z + 1) = (z − z+) (z − z−)

where z± := 2±
√

3. Thus z± are simple poles of this
integrand and only z− is inside the unit circle. The residue of G at
z− is (−1)/(2

√
3) so one finds that

I (1) =
−4πi

i

−1

2
√

3
=

2π√
3
.



For more general a, the quadratic equation changes some
(please check) - but one can still evaluate this integral explicitly.

A similar, famous, formula is that∫ 2π

0

d θ

a2 sin2θ + b2 cos2θ
=

2π

ab
when a, b > 0.

Note that if either a or b is zero then this right hand side is
∞ and the identity still holds. With this you can evaluate integrals
such as ∫ 2π

0

d θ

1 ± c2 sin2θ
with c2 < 1.

Please try. These all are examples of problems where we evaluate
integrals without knowing an antiderivative for most values of the
parameters!



The general case is based on determining a function G such
that ∫ 2π

0
g(cos θ, sin θ) d θ =

∫
C

G (z)dz .

with C the unit circle in the complex plane.

Then find the singularities of G inside C. If these are isolated
singularities, evaluate the residues of G at these poles. Finally use
the residue theorem to evaluate the integral.

Most complex analysis textbooks provide a variety of
examples either as worked problems or exercises.



Suppose f (z) is a function that is analytic on a domain D
except possibly for isolated poles in D. Such a function is called
meromorphic on D

When f (z) has a zero of order m at a point z0, then
f (z) = (z − z0)mg(z) with g analytic near z0 and g(z0) 6= 0. This
follows from Taylor’s theorem and z0 will be said to be a zero of
multiplicity m.

When f (z) has a pole of order m at a point z0, then

f (z) =
g(z)

(z − z0)m
with g(z0) 6= 0

and g analytic near z0. Such a z0 is said to be a pole of
multiplicity m.



Consider the function F (z) := f ′(z)
f (z) . This called the

logarithmic derivative of f and will have poles at the zeroes of
f (z) and zeroes at the poles of f (z) and the zeroes of f ′(z).

When z0 is a zero of order m of f, and f (z) = (z − z0)m g(z),
then f ′(z) = m(z − z0)m−1 g(z) + (z − z0)m g ′(z) so

f ′(z)

f (z)
=

m

z − z0
+

g ′(z)

g(z)

with g(z) 6= 0 close to z0. Thus F (z) has a simple pole at z0 and
its residue at the pole is m, So the contour integral of F (z) around
a p.o. simple loop containing z0 and no other zero or singularity
will be 2π i m,



When ζ0 is a pole of order m of f (z) then f (z) = g(z)
(z−ζ0)m

implies that

f ′(z) = −m(z − ζ0)−(m+1) g(z) + (z − ζ0)−m g ′(z) so

F (z) =
−m

z − ζ0
+

g ′(z)

g(z)

and again F has a simple pole at ζ0 with residue −m.

Suppose f (z) is meromorphic inside a simple p.o. loop Γ and
continuous and non-zero on Γ with zeroes inside Γ at
Sz := {zj ; 1 ≤ j ≤ J}, and poles at

Sp := {ζk ; 1 ≤ k ≤ K}, then F (z) will be analytic on this
region except for simple poles at the points in Sz ∪ Sp.



Suppose that mj is the multiplicity of zj as a zero, and mk is
the multiplicity of ζk as a pole. Define

Nz(f ) :=
J∑

j=1

mj and Np(f ) :=
K∑

k=1

mk .

The following theorem that is known as the principle of the
argument.

Theorem: If f (z) is meromorphic inside a simple p.o. loop Γ
and analytic and nonzero on Γ then

Nz(f ) − Np(f ) =
1

2π i

∫
Γ

f ′(z)

f (z)
dz



The proof of this result is based on showing that this loop
integral equals the sum of loop integrals around each pole and
each zero of F(z). These are mj ,mk respectively so the result
follows by carefully showing how to replace the integral around Γ
by complicated curves that just include 1 singularity of F at a time.
A special case is the following.

Corollary: If f (z) is analytic inside and on a simple loop C and
nonzero on C, then

Nz(f ) =
1

2πi

∫
C

f ′(z)

f (z)
dz

So if we want to know how many zeroes of a polynomial lie
in a specific region of the complex plane one need only evaluate a
contour integral around the boundary of the region. This usually is
a simple issue to do after you choose a loop that doesn’t pass
through any zero.



Numerically one does not have to compute these integrals
very accurately since their values must be integers. If one uses
approximate numerical integration and gets an answer of 3.2± 0.4,
then the actual value has to be 3. It used to be that computing an
integral was easier than solving equations but the following result
has always been used extensively.

In practice, however, one often simplifies the problem by
replacing the function f (z) by a simpler function for which the
answer is even easier. This is done using the following result.



Theorem (Rouché ) Suppose that f , h are analytic functions
inside and on a simple p.o. loop C. If |h(z)| < |f (z)| on C then
f , f + h have the same number of zeros inside C.

Example. Show that there are 4 solutions of the equation
6z4 + z3 − 2z2 + z = 1 inside the unit disk B1.

Take this function to be the f (z) + h(z), and choose a
simple function f (z) such that the theorem can be used. Then
show that the difference h(z) obeys the conditions of the theorem.



When Γ is a closed loop in the complex plane and z0 /∈ Γ
then the winding number (or index) of Γ about z0 is the value
of the integral

IndΓ(z0) :=
1

2πi

∫
Γ

dz

z − z0

This integral is always an integer ( possibly negative).

For a simple loop, this number is either ±1, negative when
the curve goes clockwise. When Γ is not be simple, but may be
parametrized by differentiable functions except at a finite number
of corners, then this number will be finite if the loop has finite
length.

It counts the number of times a closed curve ”winds around”
a point z0.

If a closed contour is not simple then all the integral formulae
the winding number must be included in contour integral formulae.


