
Evaluating Infinite Integrals and Transforms

Very often in this course and elsewhere we need to define and
evaluate integrals over either the whole real line, the interval
(0,∞), or over “infinite contours”.
Perhaps the most famous such integrals are formulae such as∫ ∞

−∞
e−a x

2
dx =

√
π/a

for the Gaussian function.



In many applications of mathematics we use Fourier and Laplace
transforms. The Laplace transform of a function f defined on
[0,∞) is

Lf (s) :=

∫ ∞
0

e−st f (t) dt with s > 0.

The Fourier transform F f of a function f defined on R is

F f (k) :=

∫ ∞
−∞

e−ikx f (x) dx = g(k) k ∈ R.

When the Fourier transform g(k) = F f (k) is known then the
inverse Fourier transform is

f (x) := (F−1g)(x) :=
1

2π

∫ ∞
−∞

e ikx g(k) dk

This is one of the great formulae in mathematics that most
graduate students in analysis will use sometime.



The integration theory that you learnt in Calculus 1 and 2 only
works for integrals over finite closed intervals [a, b]. Many results
must be changed if the function to be integrated is only continuous
on an open interval (a, b). Consider the problem of evaluating∫ 1

0
f (x) dx with f (x) = x−α

This function f is always continuous on (0,1) but when α ≥ 1, the
integral is ∞ - or not defined. That is you cannot always integrate
a continuous function on an open interval.



Intervals over infinite sets must be approximated by integrals over
finite intervals such as [0,R] or [-R,R]. Then you must prove that
the limits as R →∞ exist. If so, these limit will be the integrals
over the infinite integral.
Thus for the Gaussian integral a mathematician has to show that

lim
R→∞

∫ R

−R
e−a x

2
dx =

√
π/a,

Note that in this case one has that e−a x
2 → 0 very rapidly for |x |

large, so this is an easy limit. Many others are not so easy. The
currently used definitions of the Fourier transform (FT) were only
developed in the 1950’s - even though FTs had been used by
everyone for over 120 years.



Probability Density Functions

The ubiquitous Gaussian function is f (x , a) := e−a x
2
.

This function is everywhere positive and there is a constant ca such
that ρ(x) := ca f (x , a) is a probability density function. That is
ρ(x) > 0 for all x and the area under the curve y = ρ(x) satisfies∫ ∞

−∞
ρ(x) dx = 1

To find the appropriate constant ca one needs to evaluate

M(a) :=

∫ ∞
−∞

f (x , a) dx .

then choose ca := 1/M(a). For the Gaussian, Wikipedia has a
proof that ca =

√
a/π using Calculus 3.



There are many important probability density functions that arise
from functions of the form

f (x , a) :=
p(x , a)

q(x , a)

where p(., a), q(., a) are positive polynomials on (−∞,∞). An
example is f (x , a) := 1/(x2 + a2). This has

M(a) :=

∫ ∞
−∞

dx

x2 + a2
=
π

a
so ρ(x) :=

a

π (x2 + a2)
.

is a probability density function for any positive a.



You may know an the antiderivative of 1/(x2 + a2) but there are
only a few such formulae known.
To illustrate this consider the problem of evaluating the integrals of
f (x , a) := 1/(x4 + a4).
Instead of evaluating this real integral, consider the problem of
evaluating the contour integral of f (z) := 1/(z4 + a4) along a
contour ΓR that goes from -R to R along the real axis, then is
given by ζ(t) = R e it with 0 ≤ t ≤ π. This is a semicircle CR

of radius R center the origin from R to -R.
ΓR is a simple loop that satisfies the conditions needed for
Cauchy’s formulae and the caculus of residues.



Then the contour integral is∫
ΓR

f (z) dz =

∫ R

−R
f (x) dx +

∫ π

0
f (Re it)(iRe it) dt

From the calculus of residues one has that, since f (z) only has
poles, this integral

= 2πi [sum of residues of f(z) inside ΓR ]

To evaluate this, first need to find the poles of f (z). They are the
solutions of z4 + a4 = 0, so one finds that they are

z1 = a e iπ/4, z2 = a e3iπ/4, z3 = a e5iπ/4, z4 = a e7iπ/4



Only the first two are in the upper half plane and the residues of
the function at these simple poles are

a1 :=
1

(z1 − z2)(z1 − z3)(z1 − z4)
=
−(1 + i)

4
√

2 a3

a2 :=
1

(z2 − z1)(z2 − z3)(z2 − z4)
=

1− i

4
√

2 a3

respectively. Thus, when R > a, so the poles are inside the
contour,

a1 + a2 =
−i

2
√

2 a3
and∫

ΓR

f (z) dz =
π√
2 a3



A probabilist will now conclude that

M(a) :=

∫ ∞
−∞

dx

x4 + a4
=

π√
2 a3

, and

ρ(x) =

√
2 a3

π (x4 + a4)

is a probability density function.
Why can they do this? First note that the contour integral does
not change provided R > a. So for all R > a we see that∫ R

−R
f (x) dx +

∫ π

0
f (Re it)(iRe it) dt =

π√
2 a3



The following elementary result is a good exercise.
Lemma Suppose that f (z) = p(z)/q(z) is the ratio of two
polynomials and degree of q - degree p ≥ 2. If ΓR is a
subinterval of the circle of radius R center the origin with
θ ∈ [θ1, θ2], then |f (z)| → 0 as |z | → ∞ and

lim
R→∞

∫
ΓR

p(z)

q(z)
dz = 0

Use this in the preceding problem. One has degree q - degree p =
4, so

lim
R→∞

∫ R

−R
f (x) dx =

π√
2 a3

− lim
R→∞

∫ π

0
f (Re it)(iRe it) dt.

Since this last limit is zero, the formulae for the integrals given
above hold.



Laplace Transforms and their Inverses

In your first course in ordinary differential equations, you may have
used Laplace transforms to solve problems for linear equations with
constant coefficients. Those methods were based on an
“operational calculus” for solving differential equations in circuit
theory due primarily to Oliver Heaviside in the late 19th century.
The Laplace transform of a function f : [0,∞)→ R is defined to
be the integral

Lf (s) :=

∫ ∞
0

e−st f (t) dt

The function f (t) here could be complex valued. When s = iξ,
this is a Fourier transform as

Lf (iξ) :=

∫ ∞
0

e−iξt f (t) dt



The definition of the Laplace transform is really that

Lf (s) := lim
R→∞

∫ R

0
e−st f (t) dt

The finite integral FR(s) :=
∫ R

0 e−st f (t) dt is a simple integral
when f is continuous on [0,R]. FR(s) is a function of s that has
continuous m-th derivatives for every integer m with

F
(m)
R (s) =

∫ R

0
tm e−st f (t) dt

Simple examples include the Laplace transform (LT) of
e−at , tm, sinωt and cosωt respectively are

1

s + a
,

m!

sm+1
,

ω

(s2 + ω2)
,

s

(s2 + ω2).

The delta function δa(t) has Laplace transform e−as .



These Laplace transforms are analytic functions with simple poles.
Sometimes the calculus of residues is used to evaluate Laplace
transforms of rational functions f (t) = p(t)/q(t). Consider the
contour integral of e−sz f (z) along a contour ΓR that goes from
the origin to R along the x-axis, takes a quarter circle of radius R
to iR and then comes down along the y-axis to the origin. Then
evaluate the integral ∫

ΓR

e−sz f (z) dz

by the calculus of residues and find out what happens as R →∞.
More often, however, one is given a Laplace transform F (s) and
wants what the function f (t) was.



From the differential equations you generally have a formula for
the Laplace transform of the solution so one wants to find the
function f (t) with that transform. That is you are are given some
function F(s) and want to find the solution f (t) of the first type
integral equation ∫ ∞

0
e−st f (t) dt = F (s)

This is a badly ill-posed (or unstable) numerical problem. First
note that if |f (t)| 6 Meat , then |F (s)| 6 M/(s − a) when s
is real and larger than a. You can only define Laplace transforms
that satisfy some such growth condition.
When s is complex, Re(s) > s0, for these functions f , a similar
inequality show that F (s) is a bounded function on the half-plane
where Re(s) > s0.



So if F (s) has any singularities they must lie in the half plane
where Re(s) 6 s0. When a function f has derivatives, their
Laplace transforms are

L(f ′)(s) = sF (s)− f (0), L(f ”)(s) = s2 F (s)− s f (0)− f ′(0),

L(f ′′′)(s) = s3 F (s)− s2 f (0)− s f ′(0)− f ′′(0).

Suppose f satisfies the linear 3rd order ordinary differential
equation with constant coefficients,

f ′′′(t) + a1 f
′′(t) + a2 f

′(t) + a3f (t) = g(t) for t > 0

then its Laplace transform satisfies

Q(s)F (s) :=
[
s3 + a1 s

2 + a2 s + a3

]
F (s) = G (s)



Here G (s) is the sum of the Laplace transform of g and a quadratic
polynomial involving f(0), f’(0), f ”(0) so F (s) is given by

F (s) =
G (s)

Q(S)

with Q(s) a cubic polynomial in s. F(s) will have singularities at
the zeroes of Q and the singularities of G. In particular if G only
has poles, then also F (s) only has poles.
A formula for the inverse Laplace transform of a function that only
has poles in a half plane is given by the Bromwich integral as
follows.



Theorem Suppose F (s) is a function that is analytic in a half
plane Re(s) > s0 and only has a finite number of poles in the
half-plane Re(s) < s0 and that there are M,R such that

|s|2|F (s)| 6 M when Re(s) > s0 and |s| ≥ R

Then the unique function with Laplace transform F(s) is

f (t) :=
1

2π i

∫ c+i∞

c−i∞
est F (s) ds so

f (t) = sum of residues of est F (s) in Re(s) < s0 < c .

The zeroes of the polynomial Q(s) are the resonances of the
system governed by the differential equation.



The usual proof of this inverse Laplace transform formula is based
on that for the inverse Fourier transform. Then some properties
about change of variables in Lebesgue integrals provide the
Bromwich formula given above.
Note that if the original function f (t) is given by a power series

f (t) :=
∞∑

m=0

am tm

that converges for all t > 0, then the Laplace transform is

F (s) :=
∞∑

m=0

am m!

sm+1
.

If this formula for the Laplace transform is known, then the series
for f(t) can be evaluated.


