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1. Introduction 

 This project investigates the application of the Steklov-eigenvalue expansion method (SEM) to 

two types of boundary value problems.  The first type of problem is a mixed Dirichlet-Neumann 

boundary value problem (mixed DN bvp) involving a second-order uniformly elliptic equation subjected 

to inhomogeneous Dirichlet data on part of the boundary and homogenous Neumann flux data on the 

remainder of the boundary.  The second type of problem is a div-curl system with prescribed flux data 

on the boundary (N div-curl sys).  Both problem types model various equilibrium phenomena in physics 

with applications ranging from electrostatics, magnetostatics, Newtonian gravity, heat conduction, 

diffusion, and ideal inviscid fluid flow.  Mixed DN bvps are scalar equations that model phenomenon 

where values of the underlying potential function are known on the boundary such as temperature in 

heat conduction.  Div-curl systems are vector equations that model systems where either normal flux or 

tangential flow is known on the boundary.  Only normal flux boundary conditions are considered here.   

A solution of the mixed DN bvp can be represented by a Steklov-eigenfunction expansion while 

a solution of the N div-curl sys can be represented by the gradient of a Steklov-eigenfunction expansion.  

These solution representations are demonstrated and compared against solutions from traditional 

Galerkin finite element methods (FEM) using the software package FreeFEM++ [1].  In addition, 

numerical calculation of Steklov-eigenvalues and eigenfunctions on a rectangle are compared against 

analytical formula derived using the method of separation of variables.  Some of the advantages and 

disadvantages of SEM are also discussed.  Additionally, some examples of Steklov-spectra and associated 

eigenfunctions for specific geometries are shown. 

 In order to minimally demonstrate SEM, relevant pieces of the mathematical framework, 

existence results and variational forms are taken verbatim from Auchmuty [2], [3], and [4].  The problem 

formulation and well-posedness of the div-curl system, the mixed Dirichlet-Neumann boundary value 

problem and Steklov-eigenfunction expansion method are described in detail in [2], [3] and [4], 

respectively.  Representing solutions of the A-harmonic div-curl system as the gradient of a Steklov-

eigenfunction expansion is a novel idea due to Dr. Auchmuty and no known literature exists describing 

its soundness.  No formal proof of the result is given in this work but instead, results of its application 

are demonstrated. 

2. Mixed Dirichlet Neumann Boundary Value Problem (mixed DN bvp) 

The mixed DN bvp is a self-adjoint and second order equation of the form: 

    ( ( )  ( ))                ( 1 ) 

subject to the mixed Dirichlet and Neumann boundary conditions 

  ( )   ( )           and     ( )  ( )                 ( 2 ) 

where the boundary interface        has length or area zero and       have finite measure.  

Problem (1)-(2) is referred to as a mixed DN A-Harmonic equation and models steady-state heat 

conduction and diffusion type problems absent of sources and sinks.  When the Dirichlet boundary 
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condition in (2) is removed, problem (1)-(2) is referred to as a Neumann A-Harmonic equation (NA-

Harmonic).  The NA-Harmonic equation plays a role in calculating solutions to the div-curl sys.  The 

solution to the NA-Harmonic equation is not unique; two solutions differ by a constant.  If the set of 

solutions are restricted to solutions with zero mean, i.e.  
 

   
         , then a unique solution to the 

NA-Harmonic problem can be sought, see 6.2.3-6.2.4 in [5]. 

 

3. Div-Curl System with Prescribed Flux on the Boundary (N div-curl sys) 

A div-curl system has the form 

    ( ( ) ( ))   ( )                                                              ( 3 ) 

     ( ( ))   ( )               ( 4 ) 

subject to the prescribed flux on the boundary 

 ( ( ) ( ))     ( )        . ( 5 ) 
 

When   and   are zero, and  ( ) is the identity matrix, equations (3)-(4) are referred to as a 

Laplacian vector field (or Harmonic vector field).  When  ( ) is a symmetric positive-definite (spd) 

matrix, solutions   of (3)-(4) are said to be both A-solenoidal and irrotational, or equivalently A-

harmonic.  When   is a real constant and   is a real (vector) constant and  ( ) is spd and independent 

of  , then (3), (4), and (5) can be converted to an equivalent A-Harmonic vector field.  To see this for two 

and three dimensional vector fields, let    [
   
  

] and    [

      

      

      
], respectively 

assuming   (        ) is a vector in the three dimensional case.  Notice,    is an anti-symmetric 

matrix, i.e.       
 .  Furthermore, define   

 

 
      , which is well-defined as     exists as   is 

spd.  For symmetric   and anti-symmetric   ,     (  )    ( ) and   (   )   .  Let  ̂( )   ( )  

  .  It follows that    

    (  ( ))       (  ̂( ))                    ( 6 ) 

Similarly, for symmetric  ,           hence 
     ( ( ))        ( ̂( ))                   ( 7 ) 

The prescribed flux boundary condition (5) can be modified to 
 (  ̂( ))     ( )  (   )           .    ( 8 ) 
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The div-curl system in (6)-(8) models a diverse number of steady phenomena in physics.  The table 

below summarizes several such systems with constant circulation and/or constant divergence. 

 

Steady 
Phenomenon 

Primary Field 
  

Secondary Field 
  

Constitutive Matrix 
  

Constant 
Source/Sink 

  

Constant 
Circulation 

  

Heat 
Conduction 

Heat  
flux 
  

Thermal  
flux 
  

                     
Matrix 
   

Heat  
Generation 

   
None 

Diffusive 
Transport 

Material flux 
  

Concentration 
flux 
  

Diffusivity  
Matrix 
   

None None 

Electrostatics 
Displacement 

field 
  

Electric  
Field 
  

Permittivity 
Matrix 

  

Free-Charge 
Density 

   
None 

Magnetostatics 
Magnetic  

field 
  

Magnetic 
Intensity  

Field 
  

Magnetic 
Permeability 

Matrix 
  

None 
Current 
Density 

  

Ideal Inviscid 
Fluid Flow 

Fluid 
Momentum 

  

Fluid 
Velocity 

  

Density 
Matrix 

  
None 

Vorticity 
(rigid 

rotation) 
  

Conservative 
Newtonian 

Gravity 

Gravitational 
Displacement 

   

Gravitational 
Field 
  

Gravitational  
Matrix 
    

Mass 
Density of 

Object 
  

None 

Table 1 – various applications of the A-Harmonic vector field. 

4. Mathematical Framework, Assumptions and Variational Forms 

 

Under certain assumptions on the interior and boundary of the geometry, on the functions  ( ), 

 ( ) and  ( ), and on the boundary conditions, the mixed DN bvp (1)-(2) and N div-curl sys (3)-(5) are 

shown to have unique finite energy solutions in Auchmuty [2] and [3], respectively.  This section 

captures relevant mathematical facts that are used to frame problems (1)-(2) and (3)-(5) into equivalent 

variational problems that are conducive for computation using finite element approximation techniques. 
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(i) Assumptions on Geometry 

A region is a non-empty, connected, open subset of   .  The closure of   is denoted as  ̅ and its 

boundary by      ̅  .  In order for solutions to exist for problems (1)-(2) and (3)-(5), the following 

condition on geometry is required: 

   

(B1)   is a bounded region contained in   , for     (for div-curl systems,    is only considered) 

whose boundary    is the union of a finite number of disjoint closed Lipschitz surfaces (curves); each 

having finite surface area (arc length). 

 

This regularity condition is necessary for the existence of a unit outward normal to be well-

defined almost everywhere on the boundary   .  Consequentially, the trace map   is a well-defined 

compact operator that is important for the application of Steklov-eigenfunction expansions.  The region 

is also assumed to either be a simple region or a region that contains   holes, where each hole is a 

smooth curve.  These holes influence the solution of the div-curl systems problem. 

 

(B2) The set   satisfies (B1) and    consists of      disjoint, simple closed Lipschitz curves   , each of 

finite length. 

 

 In addition, for the mixed DN bvp, the boundary is the union of two subsets,       ̅.  The 

following condition is imposed on this boundary: 

 

(B3)   is a non-empty open subset of   ,   and  ̅ both have positive surface area (arc length) and the 

intersection (interface)     ̅ is a set of measure zero. 

 

(ii) Definitions , Notation and Assumptions on Matrix   

Derivatives of  ( ) are taken in the weak sense and are denoted by 
  

  
.  When       , the 

components are given by   (     ) and   (     )   The usual Euclidean inner product and norm 

are given by     and    .  When        is a vector field, the divergence and curl are the scalar-

valued functions on   defined by 

          ( )      ( ) , 

           ( )      ( ) , 

respectively.  Here the    are the components of  , and      
   

   
 is the j-th weak derivative of the      

The gradient of the function  ,         , is the vector field given by   ( )  (   ( )    ( )).  The 

Curl of the function   is the vector field defined by (   )( )  (   ( )     ( )).  The matrix  ( ) is a 

symmetric positive definite (spd)     matrix, for each    ̅.  In addition, the matrix must satisfy: 

(A1) Each component      of   is a bounded Lebesgue measureable function and there exist positive 

constants       such that, for all     and     ,  

        ( ( ) )          . ( 9 ) 
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(iii) Framework of Function Spaces, Tools and Decompositions Theorems 

The space   (    )  with          is the usual space of Lebesgue square measureable 

functions.  It is a real Hilbert space with the usual norm and inner product denoted by ‖ ‖ and 〈   〉, 

respectively.  The weighted inner product, provided   satisfies (A1), is well-defined and given by 

 〈   〉     ( ( ) ( ))   ( )   ,      ( 10) 

with associated norm       .    ( )  {    ( )   
   

   
   ( )  is the usual standard Sobolev space.   

  ( ) is a real Hilbert space under the standard   -inner product 

 〈   〉        ( ) ( )    ( )    ( )         ( 11) 

 

and the associated norm is given by ‖ ‖   .  Similarly,   (    ) is a Sobolev space with the usual vector 

function inner product and associated norm.  Notation for the vector inner product and norm is the 

same notation used for the scalar inner product and norm in (11).  The vector field     (    )  is 

said to be weakly E-solenoidal and weakly irrotational when 

   
(  )          , for all     

 ( ), ( 12) 

                 , for all     
 ( )  ( 13) 

 

respectively, where   
 ( ) is the set of all continuous functions on   with compact support.  The field   

is weakly A-harmonic on   if it is both weakly E-solenoidal and weakly irrotational.  Similarly for scalar 

valued functions     ( ),   is said to be weakly A-Harmonic provided that 

   
(   )          ,   for all     

 ( ). ( 14) 

 

Let    
 ( )  {    ( )            be the closed subspace of   ( ) of all functions with 

vanishing trace on  .  It is shown in [3] that the bilinear form [   ]    
 ( )    defined by  

 [   ]     
(   )                ,  for       ( ) ( 15) 

is an inner product on   ( ) that is equivalent to the standard   - inner product defined in (10).  Let 

〈   〉    
(   )        and  〈   〉          denote the components whose sum is [   ]  .  Let 

     ( ( )  ( )) then [   ]   orthogonally decomposes   ( ) into two subspaces 

   ( )     
 ( )       ( )  ( 16) 

When     , then     ( )    ( ), the subspace of weakly A-Harmonic functions in   ( ).  This 

decomposition is fundamental for the SEM method. 
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Similarly,   (    ) is shown to be decomposed into the following spaces [2]), 

 ( )  {       ( ) , 

   ( )  {             
 ( ) , 

    ( ) is the A-orthogonal complement of  ( )     ( ). 

Let     (    ), then   

  is A-orthogonal to  ( ) provided that   is A-solenoidal and ( ( ) ( ))      on      

  is A-orthogonal to    ( ) provided that   is irrotational, 

  is A-orthogonal to     ( ) provided that u is E-harmonic and ( ( ) ( ))      on   .  

 

As shown in Theorem 3 of [2], 

    (    )   ( )     ( )       ( ). ( 17) 

Hence, for     (    ), there is a potential function     ( ), stream function     
 ( ) and 

harmonic vector function       ( )  such that 

   ( )    ( )   ( )        ( )   ( ) . ( 18) 
 

The potential function   uniquely satisfies  

    
(   )                    , for all     ( ) ( 19) 

provided that  ( ) satisfies (A1) and      ( )  for some    .  When    , (19) is a NA-Harmonic 

equation, hence a unique solution requires the zero-mean condition.  

 

The stream function   uniquely satisfies 

    {(         )                , for all     
 ( ). ( 20) 

provided that  ( ) satisfies (A1) and      ( )  for some    .   

The construction of the harmonic vector function   depends on the J “holes” in the geometry.   

When there are no holes, then  ( )   , see [2] for details. Otherwise, 

 

 ( )   ( )  ∑          ( )

 

   

 ( 21) 

where each     {    ( )                             satisfies 

    
(           )            , for all     ( ). ( 22) 

 

The    coefficients can be resolved provided circulations    
     ( ) are prescribed on the holes for 

     .  Let   (          ) be the coefficients,  

  be a matrix with      〈 ( )         ( )  ( )         ( )〉  and   (           ) then 

       .   
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(iv) Steklov-Eigenfunction Expansion Method (SEM) 

SEM for the mixed DN problem seeks to find all     ( ) and     such that 

   
(   )                 ,  for     ( ) ( 23) 

          
        ( 24) 

Substituting     into (23) and applying (9) yields 

    
          

(   )              
       . 

   constant entails     , otherwise   
         , hence    . 

There are an infinite number of Steklov-eigenvalues 

                  ( 25) 

with associated Steklov-eigenfunctions   ( ) such that  

[  ( )    ( ) ]     and 〈  ( )    ( )〉   . ( 26) 

{  ( )  forms a mutual orthonormal basis for     ( ), see [3] for details. 

Given     
 ( ),   can be represented by Steklov-eigenfunctions.  The sum of Steklov-eigenfunctions 

converges strongly to  .  This result is proven in [3].  

 ( )  ∑
[      ]  

[       ]  

 

   

  ( )  ∑〈     〉 

 

   

  ( ) 
( 27) 

For the NA-Harmonic problem in (19), let    denote the subset of the boundary    with non-zero flux.  

Then for the NA-Harmonic equation with    , SEM seeks to find all     ( ) and     such that 

   
(   )                  ,  for     ( ) ( 28) 

                   ( 29) 

Notice that  (28) and (29) are similar to (25) and (26). 

{  ( )  forms a mutual orthonormal basis for a subspace of   ( ), the subspace of A-Harmonic 

functions of with vanishing flux on    in   ( )  

Given    ( ) , let  ( )  ∑   
 
     ( ) be the Steklov-expansion.  Substituting   into (19) yields 

∑   
 
      (    )        ∑   

 
     〈    〉            〈    〉  , for some     ( ). 

Let      then by A-orthogonality,                〈     〉      yields 

 ( )  ∑ 〈     〉  
 
     ( )   . ( 30) 
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(v) Variational form for FEM and SEM Representation for A-Harmonic Vector and Scalar Fields 

 

A-Harmonic Scalar Field 

In order for the mixed DN bvp (1)-(2) to have a unique solution, the following condition must be 

satisfied: 

(A2) – The Dirichlet boundary data   must be in the trace space,       ( ). 

Let    
 ( )  {    ( )           . 

The variational form of (1)-(2) seeks to find a      
 ( ) such that 

  
(   )         ,  for all      

 ( ) . ( 31) 

(31) is solved using traditional FEM. 

 

Alternatively, the solution   has the Steklov-eigenfunction expansion given by (27) with   on the 

boundary 

 ( )  ∑〈     〉 

 

   

  ( )  

 

( 32) 

A-Harmonic Vector Field 

 

In order for the N div-curl sys (6)-(8) with constant divergence and constant curl to have a unique 

solution, the following compatibility condition must be satisfied: 

 

(A3) – The prescribed flux data   must satisfy             . 

 

From (18), there is a potential function     ( ), stream function     
 ( ) and harmonic vector 

function       ( )  such that  ( )    ( )   ( )        ( )   ( ).   

      The potential function   must satisfy  

    
(   )                 , for all     ( ). ( 33) 

 

      The stream function   must satisfy 

    
(         )           , for all     

 ( ). ( 34) 

Hence,   must be a constant.      
 ( ) implies    . 
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If we further assume the prescribed circulations    
     then  ( )   .  Problem (6)-(8) is 

simplified to the following variational problem (NA-Harmonic problem). 

 

Let   
 ( )  {    ( )    ( )     , the subspace of functions in   ( ) with zero mean. 

Find     
 ( ) such that 

  
(   )                 , for all     

 ( ). ( 35) 

The vector field solution is then given by 

 ( )         
 

( 36) 

Alternatively, the solution   has the Steklov-eigenfunction expansion given by (30) 

 ( )  ∑〈     〉     

 

   

  ( ) 

 

( 37) 

The vector field then solution in terms of Steklov-eigenfunctions is then 

 

 ( )  ∑
〈     〉  

  

 

   

   ( )      

    

( 38) 

Problem (35) generally is difficult to implement in FEM directly as it is non-trivial to create a finite 

element space that guarantee the mean of the function is zero.  Instead, it is preferred to solve (35) 

using a mixed finite element method that enforces the constraint with a Lagrange multiplier.  The 

mixed variational formulation is to find     ( ) and     such that 

  
(   )                                 , for all     ( ),    . ( 39) 
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5. Analytical Solution of Steklov-Eigenvalues on a Rectangle using SEM 

SEM problems (23)-(24) and (28)-(29) have solutions that can be calculated directly using the 

method of separation of variables for the case when the geometry is a rectangle.  The classical problem 

is posed below on a rectangle that has a length 2L and width 2M such that    .  This spectrum is 

useful for comparing numerical results in section 7 for the mixed DN bvp and Neumann bvp. 

   (   )        (   )     (SE.1) 
   (   )

  
 

  (    )

  
       (    )  (SE.2) 

 
 

  (    )

  
   (    )       (    )  

(SE.3) 

   (   )

  
   (   )       (    )  

(SE.4) 

 

Applying separation of variables to (SE.1) yields  (   )   ( ) ( ), for some real-valued 

functions   [    ]    and   [    ]    with non-empty support.   

 
  (   )  

   ( )

   
 ( )  

   ( )

   
 ( )        (   )     (SE.5) 

   Let       ( )      ( ), the subset in the rectangle   where the functions are non-zero, 

  

 ( )

   ( )

   
  

 

 ( )

   ( )

   
     (   )     (SE.6) 

Fix        ( ), then  
 

 ( )

   ( )

      
 

 (  )

   (  )

    is a constant for all       ( ).  

Similarly,   
 

 ( )

   ( )

    is a constant for all       ( ). 

    ( )

   
    ( )        

   ( )

   
    ( )          (   )     (SE.7) 

For   [    ]     ( ), 
   ( )

    ( )              (    ) implies 
   ( )

      otherwise 

    ( )   .  Similarly,   [    ]     ( ) implies 
   ( )

     .  (SE.7) holds for the entire region. 

    ( )

   
    ( )        

   ( )

   
    ( )        (   )     (SE.8) 
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For    , there are no non-trivial solutions for (SE.8).  Assume     then  ( )  

      √           √   , for some real-valued constants         Applying the boundary conditions 

(SE.2) yields the linear system 

 
(     √       √   

    √       √   
) (

  
  

)    (SE.9) 

which has the unique solution (
  
  

)    as the determinant       √       √      for    . 

For     there are constants             such that 

  ( )         (SE.10) 
  ( )          (SE.11) 

Applying the boundary conditions (SE.2) to (SE.11) yields the linear system 

 
(
  
  

) (
  

  
)    (SE.12) 

which has a non-trivial solution      and    a real value.  The solution is a constant. 

   ( )    (SE.13) 

Applying the boundary conditions (SE.3) and (SE.4) to (SE.10) for   =0 yields the linear system   

 (
     
     

) (
  
  

)    (SE.14) 

In terms of   there are two non-trivial solutions of (14) , namely   
    and   

  
 

 
    When   

   , 

  
 ( )     is a constant and   

  
 

 
 corresponds to   

 ( )     .  Clearly,   
     .     can be 

selected to enforce   
 ( ) to be a zero-mean function while    can be chosen to normalize the 

eigenfunction with respect to the norm,‖ ‖   .   

For     there are constants             such that 

  ( )        √          √   (SE.15) 

  ( )       √         √    (SE.16) 

Applying the boundary conditions (SE.2) to (SE.16) yields the linear system 

 
(    √     √  

   √     √  
) (

  

  
)    (SE.17) 

which has non-trivial solutions given by the determinant      √     √        √     

    √     implies    
    

   , for    .  Let  ̂  √   
  

  
.  For even  ,     ̂     and 

    ̂      and for odd  ,     ̂     and     ̂    .   
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There is a constant   such that   

 ( )  
 

 
((  (  ) )     ̂   (  (  ) )     ̂  ). 

Observing the fact that (  )         for integer k and, applying angle sum and sum-to-product 

trigonometric identities successively yields 

   ( )   (  )⌊   ⌋    
 

 
( (

 

 
  )   )           (SE.18) 

Applying the boundary conditions (SE.3) and (SE.4) to (SE.15) for   >0 yields the linear system   

 
(
    √     √     √    √     √       √  

    √     √     √      √     √     √  
)(

  
  

)     (SE.19) 

In terms of   there are two non-trivial solutions of (14) , namely    √      √   and    

√      √  , which are well-defined for    .  

Let   
   ̂       ̂   and   

   ̂       ̂  , for     .  For all    ,    
    

    
   .   

To see this, for     ,                                              .   

For    ,   
   ̂       ̂    ̂        ̂     

 . 

For    ,
       ̂  

     ̂    
 

     ̂  

     ̂  
     √  

 

 
  ̂     ̂  .Thus,   

    
   .  

Furthermore,   
  

 

 
   

   ̂       ̂  .   

To see this,          when      .   ̂        when     .   

Thus, for all    ,    
    

    
   . 

 

For    ,   
  corresponds to     

 ( )         ̂   while   
  corresponds to     

 ( )         ̂   .  

For each integer    , there are two solutions    
     

 .  This sequence of eigenvalues and 

eigenfunctions can be arranged into sequences in such a way that the eigenvalue sequence is an 

increasing sequence for      . 

Let   ⌊
 

 
⌋, for    .  The sequence of eigenfunctions are given by  

  ( )   ((  (  ) )     
 ⌊

 

 
⌋

  
  (  (  ) )     

 ⌊
 

 
⌋

  
 ). 

This expression can be simplified further by applying                and                  . 

 
  ( )   ( 

 ⌊
 
 
⌋

  
  (  )   

 ⌊
 
 
⌋

  
 ). (SE.20) 

Combining (SE.13) and (SE.16),   (   )      ( ) ⌊
 

 
⌋
( ), then  

 
  (   )   ( 

 ⌊
 
 
⌋

  
  (  )   

 ⌊
 
 
⌋

  
 )(  )

⌊⌊
 

 
⌋  ⌋

   
 

 
(⌊

 

 
⌋ (

 

 
  )   )         . 

 
(SE.21) 

(SE.16) can be normalized with respect to the norm,  ‖ ‖   . 



14 
 

6. Numerical FEM 

The finite element method is employed to resolve the Steklov-eigenvalue problem and other 

variational problems.  A minimal description of the classical Lagrange finite element method is given. 

(i) Lagrange elements FEM Basics 

This Lagrange finite element description is taken from Glowinski [6]. Henceforth, the region   is a 

polygonal domain of    (polyhedral domain of   ).  Polygonal (polyhedral) domains can approximate 

general regions   with smooth boundaries and are referred to as a mesh.  A triangulation 

(tetrahedralization)    of   is a finite subset of triangles (tetrahedron)   such that  

    ̅,  for all,     ,            ̅ ( 40) 

   ̇    ̇   ,  for all,           with      . ( 41) 
   

        For           with      , exactly one of the conditions must hold 

        , 
         share a common vertex, 
         share a common edge, 
         share a common face (3d case). 

( 42) 
 

      The parameter   estimates the worst triangle size  (  )      {    (  )       .   The 

triangulation (tetrahedralization) is regular provided that  

      (  )    and 

there is a number     independent of   such that  

 (  )

    (  )
  , for all       

where  (  ) is the diameter of the inscribed circle of   .  All triangulations are assumed to be regular. 

For this work, only Lagrange finite element constructions are considered.  A Lagrange kth polynomial 

space is defined in two dimensions as  

   ( )  {   (   )  ∑     
   

        (   )          , ( 43) 

and in three dimensions as 

   ( )  {   (     )  ∑      
     

          (     )           . ( 44) 

 

The conforming finite element space is a subspace   
 ( )   ( )    

 ( )  such that  

      
 ( )  {   ( )       ( )                                             ( 45) 
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where       ( ) denotes the function restriction of   to the triangle   as a member Lagrange k-th 

order polynomial space defined on triangle  .  For triangles (tetrahedrons) with an edge (face) that 

meet the Dirichlet boundary  , special care must be taken to enforce this type of boundary condition. 

The dimension of the finite element subspace,      
 , is equal to number of degrees of freedom which 

depends on the order k of   ( ).  For this work, primarily    and    are used.   

The subspace (45) can be used to convert the variational formulations for the Steklov Eigenfunctions 

(23)- (24) and (28)-(29) into a discrete eigenvalue problem         the mixed DN bvp (31) into a 

discrete linear system K    , and the N-A Harmonic bvp (39) described in section (v) into a linear 

block matrix system, (
  
   

) (
 
 
)  (

 
 
).    is referred to as a stiffness matrix,   as the mass matrix, B 

as the constraint matrix,   as the load vector, and    are the unknown degrees of freedom that are used 

to construct the solution.  

(ii) Summarized Finite Element Approximations 

SEM for the mixed DN bvp (23)-(24) seeks to find all     
 ( ) and     such that 

   
(   )                 ,  for     

 ( ) ( 46) 

          
        ( 47) 

SEM for the N-Harmonic bvp (28)-(29) seeks to find all     
 ( ) and     such that 

   
(   )                  ,  for     

 ( ) ( 48) 

                   ( 49) 

FEM for the mixed DN bvp (31) seeks to find        
 ( )  such that 

  
(   )         , for all        

 ( ). ( 50) 

Mixed FEM for NA-Harmonic bvp (39) seeks to find     
 ( ) and     such that 

  
(   )                                 , for all     

 ( ) and    . ( 51) 
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7. FreeFEM++ 

FreeFEM++ is a powerful numerical PDE solver developed by Friedrich Hecht at the Laboratoire 

Jacques-Louis Lions, Universite’ Pierre et Marie Curie, Paris.  FreeFEM++ is a compiler that operates on a 

unique programming language that derives several conventions (particularly computational 

mathematics) from Fortran, Matlab, and c++ while adding a powerful new variational framework that 

encapsulates the finite element methodology.  It is an ideal tool for quickly prototyping numerical 

solutions to variational problems.  For most problems in PDEs, the following work-flow can be 

conducted in FreeFEM++.  A triangulated (tetrahedralized) geometry in the form of a mesh is either 

constructed or loaded into the system.  This mesh can be either two-dimensional or three-dimensional 

depending on the nature of the problem.  Next a finite element space or a collection of finite element 

spaces are constructed over the mesh.  Each finite element space can have its own unique finite 

element type.  Many common finite elements have been included in FreeFEM++; Lagrange elements and 

Thomas-Raviart elements are included, see [1] for more examples.  Next a variational problem or a 

system of variational problems is declared over the finite element space(s).  For some problems, it is 

enough to minimally specify the variational problem and immediately solve the problem using the high-

level solve function provided in FreeFEM++.  The solution can be post-processed and displayed in 

numerous ways.  Some options include a traditional function plot, vector field plot, contour plot, and 

stream-line plot. 

For problems that do not fit into the high-level solver mold, the variational problem can either be 

solved through optimization techniques or can be linearized into matrices.  For eigenvalue problems, 

this is the only approach offered.  There is a sufficient amount of numerical linear algebra routines that 

can uniquely resolve linear equations.  If the variational problem of interest is an eigenvalue problem, 

there is a specialized spectral shift eigenvalue method built in FreeFEM++.  In addition, FreeFEM++ is 

also capable of adapting the mesh, interpolating functions in finite element spaces, integrating and 

differentiating functions over the mesh and interacting with the operating system.  This section 

demonstrates how to solve the mixed DN bvp and div-curl bvp in FreeFEM++. 

(i) Meshing 

The starting point for solving PDEs is to first construct a mesh that approximates the geometry of 

the problem.  The example in this FreeFEM++ tutorial assumes a simple two dimensional rectangle of 

length     and width    .  For two-dimensional problems, the perimeter of the geometry must be 

specified.  This is done using the border declaration.  A border creates a parameterized curve.  A 

collection of parameterized curves (borders) are then combined to form a closed region in the plane.  If 

the closed region is valid, then a mesh can be created.  The construction of three-dimensional geometry 

requires a different set of techniques and will not be discussed here.  
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The following code demonstrates the construction a rectangle and plots the rectangular mesh. 

 

 

 

 

 

 

 

 

 

  

real       L   = 4.0;   
real       M = 1.0;   
border Left(t=- M, M)  {x=- L           ;  y=-t;   label=1;}    // Left wall 
border Top(t=0, L)        {x= L -2.0*t ; y= M;   label=2;}  // Top  wall 
border Right(t=- M, M){x=L;               y=t;     label=3;}   // Right wall 
border Bottom(t=- L, L){x=t;               y=- M; label=4;}  // Bottom wall 
 
// Construct a mesh 
mesh Th = buildmesh(Left(5* M) + Top(5*L) + Right(5* M) + Bottom(5*L)); 
plot(Th); 

Figure 1:  Plot of mesh from Code Snippet 1. 

Code Snippet 1:  Demonstrates how to define the perimeter of a 2Mx2L rectangle, triangulate into a mesh 
and plot the mesh in FreeFEM++.   
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(ii) Defining a Finite Element Space 

A finite element space is constructed over the mesh   .  The following code sample declares a 

simple P1 Lagrange finite element space, defines a continuous function  , approximates   in this space 

and plots the approximation of  . 

 

 

 

 

 

 

 

 

 

(iii) Solving a PDE Problem as a Variational Problem using Solve 

The next snippet of code solves the mixed DN bvp (50) over the rectangle.   It is a well-posed 

classical problem and fits directly into the FreeFEM++ language. 

A recap of the problem statement: Find      
 ( ) such that 

            ,  for all      
 ( ) .  

Specifically, the Dirichlet boundary condition for demonstration is given by 

 (    )    ( )    (
 

 
)  and   (   )    ( )    (  (

 

 
)
 
), for       . 

 

A homogenous Neumann condition is enforced on the remainder of the boundary.  This is 

already handled by the variational definition above. The solve statement in FreeFEM++ is used to solve 

the variational problem.  The variational problem here is in terms of a two-dimensional integral.  The 

// Create P1 Lagrange Finite Element function space 
fespace Vh(Th,P1); 
 
// Define a function 
func g=(x/L)^2+(y/M)^2; 
 
// Approximate the function in Vh 
Vh   uh = g; 
plot(uh); 

Figure 2: Plot of (
 

 
)  (

 

 
) from Code Snippet 2. 

Code Snippet 2:  Demonstrates how to declare a function space and function g in FreeFEM++.    The 
function g is then approximated in this function space and plotted. 
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integral is specified using the int2d keyword and includes the mesh    as a parameter.  The Dirichlet 

conditions are enforced using the on keyword with the corresponding perimeter label found in the 

perimeter definition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// Create P2 Lagrange Finite Element function space (Higher polynomial approximation) 
fespace Vh(Th,P2); 
Vh uh,vh;                    // uh wil be the solution function, vh is the trial function 
 
// Build Dirichlet boundary condition functions 
func g1=1-(y/M)^2; 
func g2=y*(1-(y/M)^2); 
 
// Mixed BVP (31) to solve 
solve MixedBVP(uh,vh,solver=sparsesolver) =  
              int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh)) + on(1,uh=g1) + on(3,uh=g2); 
 
plot(uh, fill=true, value=true); // Plot the solution with contours filled in and a legend visible 

Figure 3: Plot of solution to mixed BVP produced in Code Snippet 3. 

Code Snippet 3:  Demonstrates how to directly solve a well-posed mixed BVP problem with Dirichlet 
conditions on the left and right walls, and homogenous Neumann conditions on the top and bottom walls. 
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(iv) Solving a PDE Problem as a Variational Problem Explicitly 

The next snippet of code solves the NA-Harmonic bvp (51) over the rectangle.  This problem seeks 

solutions that have zero mean and the solve operator does not support this feature  

A recap of the problem statement: Find     
 ( ) and     such that 

                                    , for all     
 ( ) and    .  

  
Specifically, an inhomogeneous Neumann boundary condition is given on part of the boundary by 

 
  

  
(    )    ( )    (

 

 
)  and  

  

  
(   )    ( )  (  (

 

 
)
 
), for       . 

 

A homogenous Neumann boundary condition applies to the rest of the boundary.  A block 

matrix and vector is constructed that embeds the zero-mean constraint and variational problem.  This 

system is solved and the solution vector contains the FEM solution and the Lagrange multiplier factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code Snippet 4:  Demonstrates how to solve a Neumann BVP problem with inhomogeneous conditions on the left and right 
walls, and homogenous Neumann conditions on the top and bottom walls. 

fespace Vh (Th,P1);  // Create a P1-Lagrange FEM space 
func g1=1-(y/M)^2;   // Build Neumann boundary condition functions 
func g2=1-(y/M)^2; 
Vh uh, vh;                    // Instantiate instances of finite element space 
     
varf va(uh, vh) = int2d(Th)( dx(uh)*dx(vh)+dy(uh)*dy(vh))     // Stiffness part 
varf vb(uh, vh) = int2d(Th)(vh);                                                    // Zero-mean 
varf vL(uh, vh) = -int1d(Th,1)(g1* vh) +                                      // Left wall 
                    int1d(Th,3)(g2* vh);                                         // Right wall    
 
// Capture # of degrees of freedom to construct block matrix 
int n1 = Vh.ndof +1; 
// Construct a block matrix to solve mixed FEM problem 
//    A*uh + B*l = b   
//    B*uh=0 
matrix    A = va(Vh, Vh);     // Stiffness Block matrix A 
real[int] b = vL(0, Vh);        // Solution vector 
real[int] B = vb(0, Vh);        // Constraint block matrix 
real[int] bb(n1),                  // Modified solution vector for mixed problem 
                xx(n1),                  // Solution vector 
           l(1);                      // Lagrange multiplier 
matrix AA = [[A,B],[B',0]];       // Mixed block matrix 
set(AA,solver=sparsesolver); // Set solver type on matrix 
bb = [b,0];                                   // Construct right hand side vector 
xx = (AA^-1)*bb;                       // Get solution vector 
[uh[],l] = xx;                               // Part of vector has solution, other has Lagrange multiplier 
plot(uh,fill=true,value=true); 
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Figure 4: Solution to the Neumann bvp from Code Snippet 4. 

The gradient of the solution can also be calculated and plotted in FreeFEM++ with the following code. 

 

 

Code Snippet 5:  Demonstrates how to calculate the gradient of a scalar function and plot it.

 

Figure 5:  Plot of the gradient of a solution from Code Snippet 4 as a vector field. 

 

Vh xh = dx(uh),  
      yh = dy(uh);     // Take derivatives of the solution in the x and y direction 
plot([xh,yh]);         // Plot the vector field 
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(v) Solving an Eigenvalue Problem as a Variational Problem Explicitly 

Similar to the Neumann bvp, the Steklov eigenvalue problems (46)-(49) must be solved at the matrix 

level.  First, the varf keyword is used to define the variational forms in (46)-(49).  This is used to 

construct two matrices,   and  .  These matrices are then sent to the EigenValue routine which uses 

Arpack (a spectral shift method developed at Rice University) to solve eigenvalue problems.  It is 

important that Dirichlet conditions only be specified on the variational forms that construct matrix   

and not on the variational forms that construct matrix   otherwise an ill-conditioned system is created.    

SEM for the mixed DN bvp and NA harmonic bvp (identifying the fact that   =    for this 

demonstration) seeks to find all     
 ( ) and     such that 

   
(   )                 ,  for     

 ( )  

          
         

The code below solves the Steklov-eigenvalue problem used to reconstruct solutions to both the 

mixed DN bvp and NA harmonic bvp. 

 

 

 

 

 

 

 

 

 

 

 

 

Code Snippet 6:  Demonstrates how to solve a Steklov-eigenvalue problem.  The first six eigenfunctions are plotted. 

 

 

 

fespace Vh (Th,P1);  // Create a P1-Lagrange FEM space 
Vh uh, vh;                    // Instantiate instances of finite element space 
      
// Create variational form for Steklov-Eigenvalue problem 
varf va(uh, vh) = int2d(Th)( dx(uh)*dx(vh)+dy(uh)*dy(vh));          
varf vb(uh, vh) = int1d(Th,1,3)( uh * vh);     
 
// Construct matrices to solve eigenvalue problem 
//    A*x=l*B*x  
matrix A = va(Vh, Vh ,solver = sparsesolver);     // Matrix A on left hand side 
matrix B = vb(Vh, Vh);                                             // Matrix B on right hand side 
 
int eigCount = 6;             // Get first 6 Eigenvalues 
real[int] ev(eigCount);   // Holds Eigenfunctions 
Vh[int] eV(eigCount);           // Holds Eigenvalues 
 
// Solve Ax=lBx 
int numEigs = EigenValue(A,B,sym=true,sigma=0,value=ev,vector=eV); 
numEigs = min(eigCount,numEigs); 
 
for(int i=0;i<numEigs;i++)  // Plot the spectrum 
     plot(eV[i],fill=true,value=true,cmm= ev[i]); 
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Figure 6:  The first six Steklov-eigenfunctions from Code Snippet 6.  The functions are displayed left-to-right in increasing 
eigenvalue order.  The first eigenvalue is zero and corresponds to a constant function. 

  

𝛿  -6.0e-015 𝛿    5 

𝛿    57  3 𝛿  1.5829

𝛿  3  9    𝛿5  3  9 69 
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(vi) Solution Reconstruction via Steklov-Eigenfunctions 

The Steklov-eigenfunctions can be used to approximate the solutions of the mixed DN bvp and NA 

harmonic bvp.  After the eigenfunctions have been calculated, the coefficients in (32) and (38) can be 

calculated by evaluating boundary integrals that involve the prescribed data.  The following code 

constructs approximations to the mixed DN bvp and NA harmonic bvp with the 5 non-zero 

eigenfunctions displayed in Figure 6.  The partial summation of Steklov-terms is plotted.  The final 

summation can be compared with the solutions found by FEM (mixed FEM) in subsections (iii) and (iv). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code Snippet 7:  Demonstrates how to use the Steklov-eigenfunctions to construct solutions to the mixed DN bvp and NA 
harmonic bvp.  Partial summation with Steklov-eigenfunctions are plotted. 

 

  

Vh uhDN = 0,   // Solution to reconstruct 
      uhNA = 0; 
 
// Build Neumann boundary condition functions 
func g1=1-(y/M)^2; 
func g2=1-(y/M)^2; 
 
for(int i=1;i<numEigs;i++) 
{ 
       real c =(-int1d(Th,1)(g1*eV[i]) + int1d(Th,3)(g2*eV[i]))/ ev[i]; 
       uhDN = uhDN + c * eV[i]; 
       plot(uhDN,fill=true); 
} 
 
// Build Dirichlet boundary condition functions 
func z1=1-(y/M)^2; 
func z2=y*(1-(y/M)^2); 
 
for(int i=1;i<numEigs;i++) 
{ 
       real c =(int1d(Th,1)(z1*eV[i]) + int1d(Th,3)(z2*eV[i])); 
       uhNA = uhNA + c * eV[i]; 
       plot(uhNA,fill=true); 
} 
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Figure 7: The plots show the reconstruction of the solution to the NA harmonic bvp.  Each plot contains a partial sum of a 
certain number of terms of Steklov-eigenfunctions.  From left-to-right, the number of terms increases.  Each plot will contain 

the partial sum of the previous result plus the next Steklov-eigenfunction multiplied against the coefficient 〈     〉    . The 
2nd and 3rd eigenfunction do not play a role in the reconstruction for this example.  Approximately 3 Eigenfunctions are 
reproducing the qualitative features of the solution.  The solution obtained by mixed FEM is shown in the bottom right hand 
corner for comparison. 

  

〈𝑠   𝑔〉Σ 𝛿    = 2.66667 

〈𝑠   𝑔〉Σ /𝛿 = 2.22619e-005 〈𝑠   𝑔〉Σ 𝛿 = -0.125264 

〈𝑠   𝑔〉Σ 𝛿 = 2.92e-005 

〈𝑠5  𝑔〉Σ 𝛿5= 0.128671 𝑚𝑖𝑥𝑒𝑑 𝐹𝐸𝑀 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
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Figure 8: The plots show the reconstruction of the solution to the mixed DN bvp.  Each plot contains a partial sum of a certain 
number of terms of Steklov-eigenfunctions.  From left-to-right, the number of terms increases.  Each plot will contain the 

predecessor result plus the next Steklov-eigenfunction multiplied against the coefficient 〈     〉 . Most of the qualitative 
features are resolved by term 5.  The solution using FEM is included in the bottom right hand corner for reference. 

  

〈𝑠   𝑔〉Σ   = -0.666667 

〈𝑠   𝑔〉Σ = -0.249078 〈𝑠   𝑔〉Σ     4 5 49 

〈𝑠   𝑔〉Σ= -0.245764 

 〈𝑠5  𝑔〉Σ= -0.0055674 𝐹𝐸𝑀 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
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(vii) Measuring Convergence and Comparing SEM to FEM 

It is important to measure how well an approximate solution   to a variational problem compares 

to its actual solution   .  It is equally important to measure how well different approximations compare 

to each other.  Comparison is usually performed by using a norm, generally related to the solution 

function space.  The most common norms used for comparison are the L2-norm (10), H1-norm (11), and 

  -norm ‖ ‖         ( ).  Each of these norms can be approximated by discrete versions in 

FreeFEM++.  The L2-norm and H1-norm involve evaluating an integral of functions defined over the 

mesh   .  Integrals can be calculated using the int2d, int1d, or int3d functions in FreeFEM++, depending 

on the dimension of the mesh.  The   -norm can be calculated by built in FreeFEM++ tools. 

 There are two types of error estimates in FEM, priori and posterior.  Priori error estimates are 

useful for determining if a numerical algorithm will theoretically converge.  Posterior estimates can be 

used to determine the current error residual in an approximate solution.  This type of error estimate is 

more useful for computation as it can be used to adapt regions in the mesh that require refinement 

while keeping other regions coarse.  FreeFEM++ can adapt a mesh through a function called adaptmesh.  

There is a general error indicator built in that utilizes the Hessian matrix.  Custom error indicators can 

also be developed and passed to the adaptmesh routine.  The mesh can also be manually refined by 

subdividing triangles into sub-triangles using the splitmesh routine.  For the computations carried out in 

subsequent sections, combinations of the built-in routines are used to adapt the mesh to yield 

converged solutions.  Convergence will be measured by carefully comparing successive approximations.  

This loosely works provided the mesh step-size is steadily decreasing enough to expect a large enough 

difference in the answer.  If no change is detected within some norm-tolerance then the solution is 

considered converged.  The following code how to calculate norms. 

 

 

 

 

 

 

 

 

 

Code Snippet 8:  Demonstrates how to calculate norms. 

 

// Declare two functions to demonstrate norms 
func g1 = (x/L)^2+(y/M)^2; 
func g2 = ((L+x)*(y/M)*(1.0-y/M)+(x-L)*(1.0-(y/M)^2))/(2.0*L); 
 
// Declare two functions to demonstrate norms, mesh Th assumed created 
fespace Vh (Th,P1);   
Vh gh1 = g1, gh2=g2; 
Vh gDiff = gh1-gh2; 
 
// Absolute differences 
cout << “L2 Error : “ <<  sqrt(int2d(Th)( gDiff ^2)) << end; 
cout << “H1 Error : “ <<  sqrt(int2d(Th)( gDiff ^2 + dx(gDiff)^2+dy(gDiff)^2));<< end; 
cout << “L-Inf Error : “ <<  gDiff[].max << end; 
// Relative differences 
cout << “L2 Rel g1 Error : “ <<  sqrt(int2d(Th)( gDiff ^2))/ sqrt(int2d(Th)( gh1 ^2))  << end; 
cout << “H1 Rel g1 Error : “ <<  sqrt(int2d(Th)( gDiff ^2 + dx(gDiff)^2+dy(gDiff)^2))/  
                                                       sqrt(int2d(Th)( gh1 ^2 + dx(gh1)^2+dy(gh1)^2));<< end; 
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(viii) Mesh Adaptation 

Higher-order Steklov-eigenfunctions tend to be localized along the boundaries of the domain.  A 

smaller mesh-size must be used to capture this localization.  A uniformly triangulated mesh becomes 

inefficient as localization causes sharp gradients in the function and the solutions on the interior of 

region are near constant.  The localization can efficiently be captured by adapting the mesh properly to 

the Steklov-eigenfunctions.  The mesh has to be adapted in such a way that it can capture the lower and 

higher order Steklov-eigenfunctions.  The following code starts with a coarse mesh (coarse enough to 

resolve enough eigenfunctions), adapt the mesh against a function that combines information about the 

Steklov-eigenfunctions and continuously sub-divide triangles in half until convergence is achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code Snippet 9:  Demonstrates how to use adapt the mesh to efficiently capture low-order and high-order Steklov-
eigenfunctions. 

Vh[int] eVold(eigCount); // Last eigenvectors 
real L2Error = 1.0E8;        // Tracks the total L2 error 
real L2ETol  = 1.0E-3;        // Termination criteria 
real errAdapt = 1.0E-3;    // Adaptation routine 
 
int count = 0, maxTries = 10, numEigs = eigCount; 
while(L2Error > L2ETol  && count < maxTries) 
{ 
        if (count > 0 && count < 4) // Adapt mesh a few times   
        { 
 Vh fAdapt = 0; 
 for(int i=1;i<numEigs;i++) // Construct a function that captures localization of all terms 
       fAdapt = fAdapt +  max(fAdapt,abs(ev[i]^4*eV[i]));   
 Th = adaptmesh(Th,fAdapt, errAdapt );  
              errAdapt /=2.0; 
        }   else if (count > 1)  Th = splitmesh(Th,2); // Subdivide mesh in half   
 
        // Get resulting matrices Ax=lBx 
        matrix A = va(Vh,Vh,solver = sparsesolver); 
        matrix B = vb(Vh,Vh); 
        // Solve Ax=lBx 
        numEigs = EigenValue(A,B,sym=true,sigma=0,value=ev,vector=eV); 
        numEigs = min(eigCount,numEigs); 
 
        L2Error = 0.0; 
        for(int i=1;i<numEigs;i++) // Capture worst L2 error between eigenfunctions and last set   
        { 
                Vh ssDiff = abs(abs(eV[i])-abs(eVold[i])); 
                 L2Error = max(L2Error, int2d(Th)(ssDiff*ssDiff)); 
                 eVold[i] = eV[i]; 
        } 
        count++; 
} 
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Figure 9:  Top – original uniform mesh.  Bottom - Adapted and refined mesh.  Notice the finer mesh near the boundaries 
capture the localization. 
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8. Comparison of FEM vs. SEM for Five Model Problems 

Armed with Section 6, five model problems are solved using SEM and FEM (or mixed FEM).  Results 

are plotted and compared between methods. 

(i) Heat Conduction in a Solid Plate 

A classical mixed DN BVP is steady heat conduction in a       solid plate (    ) made of an 

isotropic material.  The left and right edges of the plate have prescribed temperature while the bottom 

and top edges are perfectly insulated; the gradient of the temperature is zero.  The problem takes the 

classical form: 

Let  ( ) be the unknown temperature of the plate   (    )  (    ).   ( ) satisfies 

   ( )                ( 52) 

subject to the mixed Dirichlet and Neumann boundary conditions 

  (    )    ( )  (     (
  

   
))  (  (

 

 
) ) ,    

  (   )    ( )               [    ]     

( 53) 

   

  
(   )  

  

  
(    )          [    ].    ( 54) 

 

The equivalent variational problem is given by 

Find      
 ( ) such that 

            ,  for all      
 ( ) ,  

where    
 ( )  {    ( )   (    )    ( )       (   )    ( )        [    ]    

A problem of this type has already been solved in section 6.  Here the boundary conditions have 

been changed.  The next code sample demonstrates the methods discussed in section 6 and solves 

problem (52-54) using both FEM and SEM.  Comparison results will also be shown for different geometry 

sizes.  The Steklov-eigenvalue and eigenfunction spectrums of the SEM method are also shown and 

compared against analytical formula derived in section 5. 
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macro Grad(u) [dx(u),dy(u)] 
// Geometry - Solid Plate 
real L = 2.0, M=1.0;  // L - value 
border Left (t=0,1) {x=-L;y=M*(1.0-2.0*t);label=1;}  // Left barrier 
border Top  (t=0,1) {x=L*(1.0-2.0*t);y=M;label=2;}   // Top wall 
border Right(t=0,1) {x=L;y=M*(2.0*t-1.0);label=3;}   // Right barrier 
border Bottom(t=0,1){x=L*(2.0*t-1.0);y=-M;label=2;}  // Bottom wall 
 
// Construct a mesh 
mesh Th = buildmesh(Left(49) + Top(49) + Right(49) + Bottom(49)); 
 
// Define inlet/outlet 
func g1 = (2.0+cos(2.0*pi*y/M))*(1.0-(y/M)^2); 
func g2 = M-abs(y); 
 
// Finite element and functions 
fespace Vh(Th,P2); 
Vh uhFEM,uhSEM,vh;                                  // Holds the final uhFEM 
int eigCount=54, numEigs=54, count=0; // total number of eigenvalues 
real[int] ev(eigCount);                               // Eigenvalues 
Vh [int]   eV(eigCount),eVold(eigCount),pSum(eigCount);  // Eigenvectors  
 
// Steklov - Eigenvalue problem in variational form 
real L2Errorsq = 1.0E8, adaptErr = 1.0e-1, shift = 10; 
varf vA(u,v) = int1d(Th,1,3)( -shift*u*v) +int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v)); 
varf vB(u,v) = int1d(Th,1,3)( u*v); 
while(L2Errorsq > 2.0E-2) 
{ 
   if (count > 0 && count < 3) // Adaptation step 
   { 
        Vh fAdapt = 0; 
        for(int i=0;i<numEigs;i++)               
             fAdapt = fAdapt +  abs(eV[i]); 
        Th = adaptmesh(Th,fAdapt,err=adaptErr); 
        adaptErr/=2.0; 
   } else if (count > 0) Th = splitmesh(Th,2); 
         
   // Get resulting matrices Ax=lBx 
   matrix A = vA(Vh,Vh,solver = sparsesolver); 
   matrix B = vB(Vh,Vh); 
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Code Snippet 10:  Code to solve mixed DN BVP with FEM and adapted SEM. 

 

Figure 10:  Adapted mesh for SEM method 

  

   // Solve Ax=lBx 
   numEigs = EigenValue(A,B,sym=true,sigma=shift,value=ev,vector=eV); 
   numEigs = min(eigCount,numEigs); 
   L2Errorsq = 0.0; 
   for(int i=0;i<numEigs;i++)     
   { 
       Vh ssDiff = abs(abs(eV[i])-abs(eVold[i])); 
       L2Errorsq = max(L2Errorsq,int2d(Th)(ssDiff*ssDiff)); 
       eVold[i] = eV[i]; 
   } 
   count++; 
} 
// Construct solution 
real[int] c(numEigs); 
for(int i=0;i<numEigs;i++) 
{ 
   c[i] =int1d(Th,1)(g1*eV[i]) + int1d(Th,3)(g2*eV[i]); 
   uhSEM = uhSEM + c[i] * eV[i]; 
   pSum[i] = uhSEM; 
} 
 
// Solve mixed DN FEM problem 
solve mixedDNFEM(uhFEM,vh)=int2d(Th)(Grad(uhFEM)'*Grad(vh)) + 
                                                         on(1,uhFEM=g1) +  on(3,uhFEM=g2); 
// Plot solutions 
plot(uhSEM,value=true,fill=true,ColorScheme=2); 
plot(uhFEM,value=true,fill=true,ColorScheme=2); 



33 
 

 

 

Figure 11:  Solutions from both SEM & FEM procedures.  Horizontal particle streamlines and vertical potential lines are 
overlayed the solution. 



34 
 

 

 

 

Figure 12:  Absolute difference of SEM & FEM solutions.  Some difference is revealed on the boundary.  Additional 
refinement might be required on boundary or more modes need to be captured. 
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Figure 15:  Relative errors for different norms comparing n-successive terms in the Steklov-expansion (x-axis) compared 
against solution produced by FEM (y-axis). 

 

 

Figure 16:  Spectral energy density given by 〈    〉 
 . 
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 Steklov Eigenvalue 

Relative   -Error 
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

  Coefficient in SEM 
Expansions 

     
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖   

‖    
 ‖  

 〈    〉  

0 -6.22E-14 2.10865 0.242433 0.825129 -1.78267 

1 0.5 1.71731 0.143154 0.787987 -0.78268 

2 1.56495 1.71731 0.143154 0.787987 2.45E-06 

3 1.57669 1.71731 0.143154 0.787987 -1.64E-06 

4 3.14164 0.660514 0.045947 0.489495 -1.11006 

5 3.14171 0.681585 0.04517 0.488529 -0.06885 

6 4.71248 0.681585 0.04517 0.488529 -4.07E-06 

7 4.71266 0.681585 0.04517 0.488529 5.67E-06 

8 6.28335 0.698315 0.022828 0.33467 0.451355 

9 6.28372 0.698315 0.022828 0.33467 -2.30E-06 

10 7.85432 0.698316 0.022828 0.334669 -1.40E-05 

11 7.85469 0.698316 0.022828 0.334669 -1.06E-06 

12 9.42538 0.397469 0.008441 0.173486 -0.30082 

13 9.42596 0.397469 0.007821 0.168101 0.045029 

14 10.9966 0.397461 0.007821 0.168102 -7.94E-06 

15 10.9977 0.397461 0.007821 0.168102 -8.49E-06 

16 12.568 0.290466 0.004302 0.120211 -0.10697 

17 12.5688 0.290466 0.004302 0.120212 5.60E-06 

18 14.1398 0.290472 0.004302 0.120211 -5.47E-06 

19 14.1415 0.290472 0.004302 0.120211 -1.27E-05 

20 15.7116 0.231391 0.002848 0.095981 0.059053 

21 15.7151 0.231391 0.002707 0.093812 -0.0162 

22 17.2843 0.23139 0.002707 0.093812 8.85E-07 

23 17.288 0.23139 0.002707 0.093812 -2.11E-05 

24 18.8572 0.193032 0.001917 0.078082 -0.03834 

25 18.8641 0.193032 0.001917 0.078082 -2.90E-06 

26 20.4309 0.193028 0.001917 0.078081 1.53E-05 

27 20.4393 0.193028 0.001917 0.078082 -2.86E-05 

28 22.0051 0.165828 0.001451 0.06754 -0.02715 

29 22.017 0.165828 0.0014 0.066451 0.00827 
Table 2:  Steklov Eigenvalues for Steady Heat Conduction problem on a (2x1) solid plate.  Relative errors in different norms 
captured for n-successive terms in the Steklov-expansion compared against solution produced by FEM. 
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Figure 17:  Comparison plot of calculated eigenvalues by SEM versus actual formula for eigenvalues for rectangle case. 

 

 

Figure 18:  Absolute difference between calculated eigenvalues by SEM and actual eigenvalues. 
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Steklov Eigenvalue 

SEM 
Analytical 
Solution 

Absolute 
Difference 

      ̂  |    ̂ | 

0 -6.22E-14 0.0 6.21725E-14 

1 0.5 0.5 0.00000E+00 

2 1.56495 1.56494 9.48218E-06 

3 1.57669 1.57667 1.59525E-05 

4 3.14164 3.14157 6.92580E-05 

5 3.14171 3.14161 9.54347E-05 

6 4.71248 4.71239 9.10810E-05 

7 4.71266 4.71239 2.70958E-04 

8 6.28335 6.28319 1.64693E-04 

9 6.28372 6.28319 5.34693E-04 

10 7.85432 7.85398 3.38366E-04 

11 7.85469 7.85398 7.08366E-04 

12 9.42538 9.42478 6.02039E-04 

13 9.42596 9.42478 1.18204E-03 

14 10.9966 10.99557 1.02571E-03 

15 10.9977 10.99557 2.12571E-03 

16 12.568 12.56637 1.62939E-03 

17 12.5688 12.56637 2.42939E-03 

18 14.1398 14.13717 2.63306E-03 

19 14.1415 14.13717 4.33306E-03 

20 15.7116 15.70796 3.63673E-03 

21 15.7151 15.70796 7.13673E-03 

22 17.2843 17.27876 5.54041E-03 

23 17.288 17.27876 9.24041E-03 

24 18.8572 18.84956 7.64408E-03 

25 18.8641 18.84956 1.45441E-02 

26 20.4309 20.42035 1.05478E-02 

27 20.4393 20.42035 1.89478E-02 

28 22.0051 21.99115 1.39514E-02 

29 22.017 21.99115 2.58514E-02 
Table 3:  Table of Steklov eigenvalues calculated by SEM method and actual Steklov-eigenvalues by analytical formula for the 
Steady Heat Conduction problem on a (2x1) solid plate.  Notice the error increases for larger terms due to the difficulty of 
calculating the Steklov-eigenfunctions localized to the boundary. 
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Figure 19:  Steklov-Eigenvalue spectra for different rectangle sizes L>=M.  M appears to be the dominating parameter. 
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M 1 1 1 1 1 1 2 2 2 2 4 4 4 4 

L 1 2 4 8 16 32 4 8 16 32 4 8 16 32 

#               

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1.00 0.50 0.25 0.13 0.06 0.03 0.25 0.13 0.06 0.03 0.25 0.13 0.06 0.03 

2 1.44 1.56 1.57 1.57 1.57 1.57 0.78 0.79 0.79 0.79 0.36 0.39 0.39 0.39 

3 1.71 1.58 1.57 1.57 1.57 1.57 0.79 0.79 0.79 0.79 0.43 0.39 0.39 0.39 

4 3.13 3.14 3.14 3.14 3.14 3.14 1.57 1.57 1.57 1.57 0.78 0.79 0.79 0.79 

5 3.15 3.14 3.14 3.14 3.14 3.14 1.57 1.57 1.57 1.57 0.79 0.79 0.79 0.79 

6 4.71 4.71 4.71 4.71 4.71 4.71 2.36 2.36 2.36 2.36 1.18 1.18 1.18 1.18 

7 4.71 4.71 4.71 4.71 4.71 4.71 2.36 2.36 2.36 2.36 1.18 1.18 1.18 1.18 

8 6.28 6.28 6.28 6.28 6.29 6.28 3.14 3.14 3.14 3.14 1.57 1.57 1.57 1.57 

9 6.28 6.28 6.28 6.28 6.29 6.28 3.14 3.14 3.14 3.14 1.57 1.57 1.57 1.57 

10 7.85 7.85 7.85 7.85 7.86 7.85 3.93 3.93 3.93 3.93 1.96 1.96 1.96 1.96 

11 7.85 7.85 7.85 7.85 7.87 7.85 3.93 3.93 3.93 3.93 1.96 1.96 1.96 1.96 

12 9.42 9.43 9.42 9.43 9.44 9.42 4.71 4.71 4.72 4.71 2.36 2.36 2.36 2.36 

13 9.42 9.43 9.42 9.43 9.44 9.42 4.71 4.71 4.72 4.71 2.36 2.36 2.36 2.36 

14 11.00 11.00 11.00 11.00 11.01 11.00 5.50 5.50 5.50 5.50 2.75 2.75 2.75 2.75 

15 11.00 11.00 11.00 11.00 11.03 11.00 5.50 5.50 5.51 5.50 2.75 2.75 2.75 2.75 

16 12.57 12.57 12.57 12.57 12.59 12.57 6.28 6.28 6.29 6.28 3.14 3.14 3.14 3.14 

17 12.57 12.57 12.57 12.57 12.61 12.57 6.28 6.28 6.30 6.28 3.14 3.14 3.14 3.14 

18 14.14 14.14 14.14 14.14 14.17 14.14 7.07 7.07 7.08 7.07 3.53 3.53 3.53 3.53 

19 14.14 14.14 14.14 14.14 14.21 14.14 7.07 7.07 7.09 7.07 3.53 3.53 3.53 3.53 

20 15.71 15.71 15.71 15.71 15.76 15.71 7.85 7.85 7.87 7.85 3.93 3.93 3.93 3.93 

21 15.71 15.72 15.71 15.71 15.80 15.71 7.85 7.85 7.88 7.85 3.93 3.93 3.93 3.93 

22 17.28 17.28 17.28 17.28 17.34 17.28 8.64 8.64 8.67 8.64 4.32 4.32 4.32 4.32 

23 17.28 17.29 17.28 17.28 17.39 17.28 8.64 8.64 8.67 8.64 4.32 4.32 4.32 4.32 

24 18.85 18.86 18.85 18.85 18.93 18.85 9.42 9.42 9.46 9.43 4.71 4.71 4.71 4.71 

25 18.85 18.86 18.85 18.85 19.01 18.85 9.42 9.43 9.48 9.43 4.71 4.71 4.71 4.71 

26 20.42 20.43 20.42 20.43 20.51 20.42 10.21 10.21 10.26 10.21 5.11 5.11 5.11 5.11 

27 20.42 20.44 20.42 20.43 20.61 20.42 10.21 10.21 10.28 10.21 5.11 5.11 5.11 5.11 

28 21.99 22.01 21.99 22.00 22.11 21.99 11.00 11.00 11.07 11.00 5.50 5.50 5.50 5.50 

29 21.99 22.02 21.99 22.00 22.22 21.99 11.00 11.00 11.08 11.00 5.50 5.50 5.50 5.50 

Table 4:  Summary of Steklov-eigenvalue spectra for different rectangle sizes L>=M.   
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Figure 20:  Different L2-Norm convergence rates for different geometries.  Notice the M parameter has an effect on 
convergence. 
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(ii) Electrostatics 

The FreeFEM++ manual provides an example of a Dirichlet BVP in electrostatics using FEM; see 

section 9.1.2 in [1].  This demonstration models the same problem with the exception of replacing a zero 

potential Dirichlet boundary condition on the outer wall with a no-flux boundary condition.  The 

geometry consists of a circular conductor    {(5      5     )   [   ]  containing two elliptical 

oppositely charged holes,  

   {(    3      3     )   [   ]  and     {(     3      3     )   [   ] .   

The charge is represented by constant Dirichlet conditions on the boundary of the holes.  It is 

assumed that there is no current and charge distribution is independent of time.  The problem takes the 

form: 

Let  ( ) be the electric potential of the conductor,      (     ).   ( ) satisfies 

   ( )                ( 55) 

subject to the mixed Dirichlet and Neumann boundary conditions 

  (   )    (   )        (   )       

 (   )    (   )         (   )         

( 56) 

   

  
(   )         (   )    .    ( 57) 

 

The equivalent variational problem is given by 

Find      
 ( ) such that 

            ,  for all      
 ( ) ,  

where    
 ( )  {    ( )  ( )    ( )           ( )    ( )           . 
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macro Grad(u) [dx(u),dy(u)] 
// Geometry - Solid Plate 
real L = 2.0, M=1.0;  // L - value 
border C0 (t=0,1) {x=5.0*cos(2.0*pi*t);y=5.0*sin(2.0*pi*t);}          // Circular conductor 
border C1  (t=0,1) {x=2.0+0.3*cos(2.0*pi*t);y=3.0*sin(2.0*pi*t);} // Right conductor positive charge 
border C2(t=0,1) {x=-2.0+0.3*cos(2.0*pi*t);y=3.0*sin(2.0*pi*t);}  // Left conductor negative charge 
 
// Construct a mesh 
mesh Th = buildmesh(C0(100) + C1(-200) + C2(-200)); 
 
// Define inlet/outlet 
func g1 =  1; 
func g2 = -1; 
 
// Finite element and functions 
fespace Vh(Th,P2); 
Vh uhFEM,uhSEM,vh;                                  // Holds the final uhFEM 
int eigCount=75, numEigs=75, count=0; // total number of eigenvalues 
real[int] ev(eigCount);                               // Eigenvalues 
Vh [int]   eV(eigCount),eVold(eigCount),pSum(eigCount);  // Eigenvectors  
 
// Steklov - Eigenvalue problem in variational form 
real L2Errorsq = 1.0E8, adaptErr = 1.0e-2, shift = 0; 
varf vA(u,v) = int1d(Th, C1,C2)(-shift* u*v)+ int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v)); 
varf vB(u,v) = int1d(Th, C1,C2)( u*v); 
while(L2Errorsq > 5.0E-1) 
{ 
   if (count > 0 && count < 5) // Adaptation step 
   { 
        Vh fAdapt = 0; 
        for(int i=0;i<numEigs;i++)               
             fAdapt = fAdapt +  abs(eV[i]); 
        Th = adaptmesh(Th,fAdapt,err=adaptErr); 
        adaptErr/=2.0; 
   } else if (count > 0) Th = splitmesh(Th,2); 
         
   // Get resulting matrices Ax=lBx 
   matrix A = vA(Vh,Vh,solver = sparsesolver); 
   matrix B = vB(Vh,Vh); 
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Code Snippet 11:  Code to solve mixed DN BVP with FEM and adapted SEM. 

 

Figure 21:  Adapted mesh constructed for the SEM method. 

 

   // Solve Ax=lBx 
   numEigs = EigenValue(A,B,sym=true,sigma=0,value=ev,vector=eV,tol=1.0e-10); 
   numEigs = min(eigCount,numEigs); 
   L2Errorsq = 0.0; 
   for(int i=0;i<numEigs;i++)     
   { 
       Vh ssDiff = abs(abs(eV[i])-abs(eVold[i])); 
       L2Errorsq = max(L2Errorsq,int2d(Th)(ssDiff*ssDiff)); 
       eVold[i] = eV[i]; 
   }   count++; 
} 
// Construct solution 
real[int] c(numEigs); 
for(int i=0;i<numEigs;i++) 
{ 
   c[i] =int1d(Th, C1)(g1*eV[i]) + int1d(Th, C2)(g2*eV[i]); 
   uhSEM = uhSEM + c[i] * eV[i]; 
   pSum[i] = uhSEM; 
} 
// Solve mixed DN FEM problem 
solve mixedDNFEM(uhFEM,vh)=int2d(Th)(Grad(uhFEM)'*Grad(vh)) + 
                                                         on(C1,uhFEM=g1) +  on(C2,uhFEM=g2); 
// Plot solutions 
plot(uhSEM,value=true,fill=true,ColorScheme=2); 
plot(uhFEM,value=true,fill=true,ColorScheme=2); 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22:  Solutions from both SEM & FEM procedures.  Horizontal particle streamlines and vertical potential lines 
overlayed. 
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Figure 23:  Absolute difference of SEM & FEM solutions.  Some difference is revealed on the boundary. 

 

Figure 24: Electric field in conductor. 
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Figure 27:  Relative errors for different norms comparing n-successive terms in the Steklov-expansion (x-axis) compared 
against solution produced by FEM (y-axis). 

 

Figure 28:  Spectral energy density given by 〈    〉 
 . 
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 Steklov Eigenvalue 

Relative   -Error 
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

  Coefficient in SEM 
Expansions 

     
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖   

‖    
 ‖  

 〈    〉  

0 1.77E-15 1 0.944751 1.05872 9.91E-09 

1 0.14881 0.965159 0.374473 0.565685 3.82539 

2 0.242057 0.965157 0.374473 0.565685 7.50E-06 

3 0.363601 0.965157 0.374473 0.565685 -1.35E-05 

4 0.624671 0.965157 0.374473 0.565685 5.68E-06 

5 0.757509 0.272092 0.072126 0.129212 3.15407 

6 0.802058 0.272092 0.072126 0.129212 8.67E-06 

7 0.972284 0.272091 0.072126 0.129212 -1.65E-06 

8 1.02212 0.272091 0.072126 0.129212 -5.02E-06 

9 1.1328 0.198469 0.047145 0.10368 0.34115 

10 1.37108 0.198469 0.047145 0.10368 -1.16E-07 

11 1.44895 0.156388 0.028571 0.070684 0.366737 

12 1.54291 0.156388 0.028571 0.070684 9.81E-07 

13 1.62311 0.15639 0.028571 0.070684 1.12E-05 

14 1.9092 0.156389 0.028571 0.070684 -1.29E-06 

15 1.93798 0.15639 0.028571 0.070684 -1.08E-06 

16 2.0743 0.15639 0.028571 0.070684 -1.12E-05 

17 2.11804 0.108639 0.015692 0.051912 -0.19079 

18 2.43134 0.108637 0.015692 0.051912 -2.21E-05 

19 2.44335 0.102425 0.013792 0.04607 -0.09756 

20 2.58896 0.102425 0.013792 0.04607 -7.42E-07 

21 2.61678 0.102424 0.013792 0.04607 -4.92E-06 

22 2.94674 0.102424 0.013792 0.04607 1.25E-07 

23 2.95266 0.102424 0.013792 0.04607 2.93E-07 

24 3.09672 0.10243 0.013792 0.04607 2.11E-05 

25 3.11676 0.075853 0.00829 0.035694 0.102084 

26 3.45901 0.075854 0.00829 0.035694 2.14E-05 

27 3.46246 0.073645 0.007856 0.03357 0.042499 

28 3.60167 0.073645 0.007856 0.03357 3.53E-07 

29 3.61719 0.073644 0.007856 0.03357 2.74E-06 
Table 5:  Steklov eigenvalues for Electrostatics problem on a circular conductor.  Relative errors in different norms captured 
for n-successive terms in the Steklov-expansion compared against solution produced by FEM. 
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(iii) Inviscid Fluid Flow between Parallel Plates 

A simple example of a div-curl system is to consider an incompressible and irrotational planar flow 

of a fluid between two plates.  The velocity field of an incompressible fluid satisfies         and the 

irrotational assumption implies         .  A fluid of this type has negligible viscosity and is called 

inviscid.  The geometry of the parallel plates is a rectangle, similar to problem (i).  The top and bottom 

walls are impermeable plates enforced with a no-flux condition.  The remaining left and right walls 

possess a flowing fluid measured in terms of a velocity flux, (    )( )    ( )  and (    )( )  

  ( ),  such that the net flux across the boundary                   is zero.  This problem fits the 

Neumann Harmonic problem discussed in section 4-(v).  The problem takes the form: 

Let  ( ) be the unknown fluid velocity between the plates in the planar region   (    )  

(    ).  There is a velocity potential  ( ),   =    , that satisfies 

   ( )                ( 58) 

subject to the Neumann boundary conditions 

  
  

  
(    )    ( )  (  (

 

 
) ) ,    

 
  

  
(   )    ( )  (  (

 

 
) )         [    ]     

( 59) 

   

  
(   )  

  

  
(    )          [    ].    ( 60) 

 

The equivalent mixed variational formulation is to find     ( ) and     such that 

                                    , for all     ( ),    . ( 61) 

 

The associated Steklov-eigenvalues for this problem are similar to those found in the heat 

conduction problem (i).  This demonstration does not delve into the details of comparing results with 

the analytical solution.  See problem (i) for details. 
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macro Grad(u) [dx(u),dy(u)] 
// Geometry - Solid Plate 
real L = 2.0, M=1.0;  // L - value 
border Left (t=0,1) {x=-L;y=M*(1.0-2.0*t);label=1;}  // Left barrier 
border Top  (t=0,1) {x=L*(1.0-2.0*t);y=M;label=2;}   // Top wall 
border Right(t=0,1) {x=L;y=M*(2.0*t-1.0);label=3;}   // Right barrier 
border Bottom(t=0,1){x=L*(2.0*t-1.0);y=-M;label=2;}  // Bottom wall 
 
// Construct a mesh 
mesh Th = buildmesh(Left(50) + Top(50) + Right(50) + Bottom(50)); 
 
// Define inlet/outlet 
func g1 = 1.0-(y/M)^2; 
func g2 = 1.0-(y/M)^2; 
 
// Finite element and functions 
fespace Vh(Th,P2); 
Vh uhFEM,uhSEM,vh;                                  // Holds the final uhFEM 
int eigCount=33, numEigs=3, count=0; // total number of eigenvalues 
real[int] ev(eigCount);                               // Eigenvalues 
Vh [int]   eV(eigCount),eVold(eigCount),pSum(eigCount);  // Eigenvectors  
 
// Steklov - Eigenvalue problem in variational form 
real L2Errorsq = 1.0E8, adaptErr = 1.0e-2, shift = 1.0e-2; 
varf vA(u,v) = int1d(Th,1,3)(-shift*u* v)+int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v)); 
varf vB(u,v) = int1d(Th,1,3)( u*v) ; 
while(L2Errorsq > 3.0E-2) 
{ 
   if (count > 0 && count < 3) // Adaptation step 
   { 
        Vh fAdapt = 0; 
        for(int i=1;i<numEigs;i++)               
             fAdapt = fAdapt +  abs(eV[i]); 
        Th = adaptmesh(Th,fAdapt,err=adaptErr); 
        adaptErr/=2.0; 
   } else if (count > 0) Th = splitmesh(Th,2); 
         
   // Get resulting matrices Ax=lBx 
   matrix A = vA(Vh,Vh,solver = sparsesolver); 
   matrix B = vB(Vh,Vh); 
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Code Snippet 12:  Code to solve Neumann BVP with FEM and adapted SEM. 

   // Solve Ax=lBx 
   numEigs = EigenValue(A,B,sym=true,sigma=0,value=ev,vector=eV); 
   numEigs = min(eigCount,numEigs); 
   L2Errorsq = 0.0; 
   for(int i=1;i<numEigs;i++)     
   { 
       Vh ssDiff = abs(abs(eV[i])-abs(eVold[i])); 
       L2Errorsq = max(L2Errorsq,int2d(Th)(ssDiff*ssDiff)); 
       eVold[i] = eV[i]; 
   } 
   count++; 
} 
// Construct solution 
real[int] c(numEigs); 
for(int i=1;i<numEigs;i++) 
{ 
   c[i] =(int1d(Th,1)(g1*eV[i]) + int1d(Th,3)(g2*eV[i]))/ ev[i]; 
   uhSEM = uhSEM + c[i] * eV[i]; 
   pSum[i] = uhSEM; 
} 
// Solve mixed DN FEM problem 
varf va(uh,vh) = int2d(Th)(Grad(uh)'*Grad(vh)); 
varf vb(uh,vh) = int2d(Th)(vh); 
varf vL(uh,vh) = -int1d(Th,1)(g1*vh) +  // Left wall 
                              int1d(Th,3)(g2*vh);  // right wall    
// Capture # of degrees of freedom to construct mixed matrix 
int n1 = Vh.ndof+1; 
// Construct mixed matrix to solve mixed FEM problem 
//    A*uh + B*l = b   
//    B*uh=0 
matrix   A = va(Vh,Vh);   // Stiffness Block matrix A 
real[int] b = vL(0,Vh);    // Solution vector 
real[int] B = vb(0,Vh);    // Constraint block matrix 
real[int] bb(n1),  // Modified solution vector for mixed problem 
                xx(n1),  // Solution vector 
          l(1);   // lagrange multiplier 
matrix   AA = [[A,B],[B',0]];  // Mixed block matrix 
set(AA,solver=sparsesolver); // Set solver type on matrix 
bb = [b,0];      // Construct right hand side vector 
xx = (AA^-1)*bb; // Get solution vector 
[uhFEM[],l] = xx;   // Part of vector has solution, other has lagrange multiplier 
// Plot solutions 
plot(uhSEM,value=true,fill=true,ColorScheme=2); 
plot(uhFEM,value=true,fill=true,ColorScheme=2); 
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Figure 29:  Adapted mesh for SEM method 
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Figure 30:  Solutions from both SEM & FEM procedures.  Horizontal particle streamlines and vertical potential lines are 
overlayed. 
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Figure 31:  Absolute difference of SEM & FEM solutions.  Some difference is revealed on the boundary. 

 

Figure 32: Velocity field showing flow of fluid between parallel plates. 
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Figure 35:  Relative errors for different norms comparing n-successive terms in the Steklov-expansion (x-axis) compared 
against solution produced by FEM (y-axis). 

 

Figure 36:  Spectral energy density given by 〈    〉 
 .  
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 Steklov Eigenvalue 

Relative   -Error 
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

  Coefficient in SEM 
Expansions 

     
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖   

‖    
 ‖  

 〈    〉  

0 -1.19E-13 1.44964 0.642496 0.85352 0 

1 0.5 0.155071 0.021554 0.099294 -2.66667 

2 1.56495 0.155071 0.021554 0.099294 3.44E-08 

3 1.57668 0.155071 0.021554 0.099294 -1.73E-07 

4 3.14159 0.155673 0.021553 0.099296 0.000855 

5 3.14163 0.026067 0.001961 0.018392 0.182438 

6 4.71241 0.026067 0.001961 0.018392 8.17E-08 

7 4.71241 0.026067 0.001961 0.018392 2.78E-08 

8 6.28322 0.026068 0.001431 0.01396 0.016125 

9 6.28322 0.009941 0.000497 0.007188 0.016127 

10 7.85402 0.009941 0.000497 0.007188 1.14E-08 

11 7.85403 0.009941 0.000497 0.007188 -1.71E-08 

12 9.42483 0.009941 0.000377 0.005737 -0.00478 

13 9.42484 0.005163 0.000191 0.003764 0.004778 

14 10.9956 0.005163 0.000191 0.003764 6.11E-09 

15 10.9957 0.005163 0.000191 0.003764 3.22E-09 

16 12.5665 0.005163 0.00015 0.003121 0.002016 

17 12.5665 0.003147 9.23E-05 0.002304 0.002016 

18 14.1373 0.003147 9.23E-05 0.002304 -9.68E-09 

19 14.1373 0.003147 9.23E-05 0.002304 -8.22E-10 

20 15.7081 0.003147 7.46E-05 0.001964 -0.00103 

21 15.7081 0.002115 5.12E-05 0.001552 0.001032 

22 17.279 0.002115 5.12E-05 0.001552 -4.33E-09 

23 17.279 0.002115 5.12E-05 0.001552 3.05E-09 

24 18.8498 0.002115 4.24E-05 0.001351 0.000597 

25 18.8498 0.001518 3.13E-05 0.001114 -0.0006 

26 20.4207 0.001518 3.13E-05 0.001114 2.08E-11 

27 20.4207 0.001518 3.13E-05 0.001114 -1.53E-09 

28 21.9916 0.001518 2.64E-05 0.000986 0.000376 

29 21.9916 0.001142 2.05E-05 0.000838 0.000376 
Table 6:  Steklov Eigenvalues for the inviscid flow between parallel plates.  Relative errors in different norms captured for n-
successive terms in the Steklov-expansion compared against solution produced by FEM. 
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(iv) Inviscid Fluid Flow (Contraction-Expansion) 

Example (iii) resulted in a well-behaved field of parallel lines across the region.  The field near the 

left and right walls is slightly perturbed from parallel lines due to the boundary conditions.  The next two 

examples continue to assume inviscid incompressible planar flow.  The geometry in this example has a 

change in area called an expansion that opens the flow from a constricted zone to a less constricted 

zone.  This flow field is more interesting than the flow between the parallel plates example.  The top and 

bottom walls are impermeable plates with a no-flux condition.  The walls will open up at a point along 

the x-axis.  The remaining left and right walls continue to contain a velocity flux, (    )( )    ( )  and 

(    )( )    ( ),  such that the net flux across the boundary                   is zero.  The 

problem takes the form: 

Let  ( ) be the unknown fluid velocity between the expanded plates in the planar region 

  (    )  (      )  (   ))  (      )           .  There is a velocity potential  ( ),   

=    , that satisfies 

   ( )                ( 62) 

subject to the Neumann boundary conditions 

 
 

  

  
(    )    ( )  (  (
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)         [      ] ,    

 
  

  
(   )    ( )  (  (
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)              [      ]     

( 63) 

   

  
(    )  

  

  
(     )          [    ],    ( 64) 

   

  
(    )  

  

  
(     )          [   ]      (65) 

   

  
(   )  

  

  
(    )          [     ]      (66) 

 

The equivalent mixed variational formulation is to find     ( ) and     such that 

                                    , for all     ( ),    . ( 67) 
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macro Grad(u) [dx(u),dy(u)] 
// Geometry Parallel plates 
real L = 8.0;  // L - value 
real M = 1.0; 
// Rectangle geometry 
border Left(t=0,1){x=-L;y=M*(2.0*t-1.0);label=1;}     // Left wall 
border Top1(t=0,1){x=L*(t-1.0);y=M;label=2;}          // Lower Top  wall 
border Wall1(t=0,1){x=0.0;y=M+4.0*t;label=2;}            // Wall 
border Top2(t=0,1){x=L*t;y=5.0*M;label=2;}                // Upper top wall 
border Right(t=0,1){x=L;y=-5.0*M + 10*M*t;label=3;}     // Right wall 
border Bott1(t=0,1){x=L*(t-1.0);y=-M;label=2;}   // Bottom wall 
border Bott2(t=0,1){x=L*t;y=-5*M;label=2;}   // Bottom wall 
border Wall2(t=0,1){x=0.0;y=-M-4.0*t;label=2;} 
// Coarse rough uniform rectanglur mesh 
real S = 33; 
mesh Th = buildmesh(Left(-S) + Top1(-S) + Wall1(-S) + Top2(-S) + Right(S) + Bott1(S) + Bott2(S) + Wall2(S)); 
// Define inlet/outlet 
func g1 = 1-(y/M)^2; 
func g2 = (1-(y/(5*M))^2)/5; 
// Finite element and functions 
fespace Vh(Th,P2); 
Vh uhFEM,uhSEM,vh;                                  // Holds the final uhFEM 
int eigCount=33, numEigs=33, count=0; // total number of eigenvalues 
real[int] ev(eigCount);                               // Eigenvalues 
Vh [int]   eV(eigCount),eVold(eigCount),pSum(eigCount);  // Eigenvectors  
// Steklov - Eigenvalue problem in variational form 
real L2Errorsq = 1.0E8, adaptErr = 1.0e-2, shift = 0; 
varf vA(u,v) = int1d(Th, 1,3)(-shift* u*v)+int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v)); 
varf vB(u,v) = int1d(Th, 1,3)( u*v); 
while(L2Errorsq > 5.0E-1) 
{ 
   if (count > 0 && count < 5) // Adaptation step 
   { 
        Vh fAdapt = 0; 
        for(int i=1;i<numEigs;i++)               
             fAdapt = fAdapt +  abs(eV[i]); 
        Th = adaptmesh(Th,fAdapt,err=adaptErr); 
        adaptErr/=2.0; 
   } else if (count > 0) Th = splitmesh(Th,2);        
   // Get resulting matrices Ax=lBx 
   matrix A = vA(Vh,Vh,solver = sparsesolver); 
   matrix B = vB(Vh,Vh); 
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Code Snippet 13:  Code to solve Neumann BVP with FEM and adapted SEM. 

   // Solve Ax=lBx 
   numEigs = EigenValue(A,B,sym=true,sigma=shift,value=ev,vector=eV); 
   numEigs = min(eigCount,numEigs); 
   L2Errorsq = 0.0; 
   for(int i=0;i<numEigs;i++)     
   { 
       Vh ssDiff = abs(abs(eV[i])-abs(eVold[i])); 
       L2Errorsq = max(L2Errorsq,int2d(Th)(ssDiff*ssDiff)); 
       eVold[i] = eV[i]; 
   }   count++; 
} 
// Construct solution 
real[int] c(numEigs); 
for(int i=1;i<numEigs;i++) 
{ 
   c[i] =(int1d(Th, 1)(g1*eV[i]) + int1d(Th, 3)(g2*eV[i]))/ ev[i]; 
   uhSEM = uhSEM + c[i] * eV[i]; 
   pSum[i] = uhSEM; 
} 
// Solve mixed DN FEM problem 
varf va(uh,vh) = int2d(Th)(Grad(uh)'*Grad(vh)); 
varf vb(uh,vh) = int2d(Th)(vh); 
varf vL(uh,vh) = -int1d(Th,1)(g1*vh) +  int1d(Th,3)(g2*vh);  // right wall    
// Capture # of degrees of freedom to construct mixed matrix 
int n1 = Vh.ndof+1; 
// Construct mixed matrix to solve mixed FEM problem 
//    A*uh + B*l = b   
//    B*uh=0 
matrix   A = va(Vh,Vh);   // Stiffness Block matrix A 
real[int] b = vL(0,Vh);    // Solution vector 
real[int] B = vb(0,Vh);    // Constraint block matrix 
real[int] bb(n1),   xx(n1), l(1);   // Modified sol vector for mixed problem, sol vector, lagrange multiplier 
matrix   AA = [[A,B],[B',0]];  // Mixed block matrix 
set(AA,solver=sparsesolver); // Set solver type on matrix 
bb = [b,0];      // Construct right hand side vector 
xx = (AA^-1)*bb; // Get solution vector 
[uhFEM[],l] = xx;   // Part of vector has solution, other has Lagrange multiplier 
// Plot solutions 
plot(uhSEM,value=true,fill=true,ColorScheme=2); 
plot(uhFEM,value=true,fill=true,ColorScheme=2); 
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Figure 37:  Adapted mesh for SEM method. 

  



67 
 

 

 

 

Figure 38:  Solutions from both SEM & FEM procedures. Horizontal particle streamlines and vertical potential lines are 
overlayed. 
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Figure 39:  Absolute difference of SEM & FEM solutions.  Some difference is revealed on the left boundary. 

 

Figure 40: Vector field showing flow of fluid between parallel plates going through an expansion. 
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Figure 43:  Relative errors for different norms comparing n-successive terms in the Steklov-expansion (x-axis) compared 
against solution produced by FEM (y-axis). 

 

Figure 44:  Spectral energy density given by 〈    〉 
 . 
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 Steklov Eigenvalue 

Relative   -Error 
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

  Coefficient in SEM 
Expansions 

     
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖   

‖    
 ‖  

 〈    〉  

0 -5.70E-15 5.87036 0.909452 0.927613 0 

1 0.115833 0.156171 0.015969 0.025448 8.91375 

2 0.310419 0.156166 0.015969 0.025448 1.24E-05 

3 0.628316 0.155052 0.003409 0.014534 0.291046 

4 0.942573 0.155052 0.003409 0.014534 -1.16E-06 

5 1.25683 0.155052 0.003124 0.014265 0.036052 

6 1.57099 0.155051 0.003124 0.014265 7.36E-07 

7 1.57118 0.155051 0.003124 0.014265 3.57E-06 

8 1.88574 0.155051 0.003107 0.014234 0.010681 

9 2.20028 0.155051 0.003107 0.014234 2.31E-06 

10 2.5156 0.155051 0.003104 0.014226 0.004502 

11 2.83111 0.155051 0.003104 0.014226 -1.02E-06 

12 3.1419 0.026052 0.00029 0.002649 0.128994 

13 3.14667 0.026052 0.000285 0.002637 0.002305 

14 3.46344 0.026052 0.000285 0.002637 1.62E-06 

15 3.78087 0.026052 0.000283 0.002632 -0.00133 

16 4.09998 0.026052 0.000283 0.002632 -2.99E-06 

17 4.41843 0.026052 0.000283 0.00263 -0.00084 

18 4.71291 0.026052 0.000283 0.00263 2.50E-07 

19 4.73863 0.026052 0.000283 0.00263 -1.27E-06 

20 5.06115 0.026052 0.000283 0.002628 0.000558 

21 5.38563 0.026052 0.000283 0.002628 -4.17E-06 

22 5.71145 0.026052 0.000282 0.002628 -0.00039 

23 6.03549 0.026052 0.000282 0.002628 7.12E-07 

24 6.2842 0.009927 7.19E-05 0.001024 -0.01612 

25 6.36402 0.009927 7.18E-05 0.001023 0.000283 

26 6.70131 0.009927 7.18E-05 0.001023 -1.06E-06 

27 7.03337 0.009927 7.17E-05 0.001023 0.000213 

28 7.36945 0.009927 7.17E-05 0.001023 -5.19E-06 

29 7.70985 0.009927 7.16E-05 0.001022 -0.00016 
Table 7:  Steklov Eigenvalues for the inviscid flow between parallel plates with a contraction-expansion.  Relative errors in 
different norms captured for n-successive terms in the Steklov-expansion compared against solution produced by FEM. 
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(v) Inviscid Fluid Flow around a Circle 

This example demonstrates inviscid flow between two plates around a circle cut out in the center of 

the domain.  The flow is assumed to be inviscid and incompressible planar flow.  The geometry in this 

example is a rectangle with a circle cut from the center.  The top and bottom wall plates and boundary 

of the circle are considered impermeable with a no-flux condition enforced on these walls.  The 

remaining left and right walls continue to contain a velocity flux, (    )( )    ( )  and (    )( )  

  ( ),  such that the net flux across the boundary                   is zero.  The problem takes the 

form: 

Let  ( ) be the unknown fluid velocity between the expanded plates in the planar region 

  (    )  (    )    with    {(                   )   [   ] .    is restricted to be strictly 

inscribed in     There is a velocity potential  ( ),   =    , that satisfies 

   ( )                ( 68) 

subject to the Neumann boundary conditions 

 
 

  

  
(    )    ( )  (  (

 

 
)
 
)         [    ] ,    
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( 69) 

   

  
(   )  

  

  
(    )          [    ],    ( 70) 

   

  
(   )         (   )    .     (71) 

 

The equivalent mixed variational formulation is to find     ( ) and     such that 

                                    , for all     ( ),    . ( 72) 
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  macro Grad(u) [dx(u),dy(u)] 
// Geometry - Solid Plate 
real L = 2.0, M=2.0;  // L - value 
border Left (t=0,1) {x=-L;y=M*(1.0-2.0*t);label=1;}  // Left barrier 
border Top  (t=0,1) {x=L*(1.0-2.0*t);y=M;label=2;}   // Top wall 
border Right(t=0,1) {x=L;y=M*(2.0*t-1.0);label=3;}   // Right barrier 
border Bottom(t=0,1){x=L*(2.0*t-1.0);y=-M;label=2;}  // Bottom wall 
border C (t=0,1) {x=0.25*cos(2.0*pi*t);y=0.25*sin(2.0*pi*t); label=4;}          // Circular obstacle 
 
// Construct a mesh 
mesh Th = buildmesh(Left(49) + Top(49) + Right(49) + Bottom(49) + C(-49) ); 
// Define inlet/outlet 
func g1 = 1-(y/M)^2; 
func g2 = (1-(y/(5*M))^2)/5; 
// Finite element and functions 
fespace Vh(Th,P2); 
Vh uhFEM,uhSEM,vh;                                  // Holds the final uhFEM 
int eigCount=33, numEigs=33, count=0; // total number of eigenvalues 
real[int] ev(eigCount);                               // Eigenvalues 
Vh [int]   eV(eigCount),eVold(eigCount),pSum(eigCount);  // Eigenvectors  
// Steklov - Eigenvalue problem in variational form 
real L2Errorsq = 1.0E8, adaptErr = 1.0e-2, shift = 0; 
varf vA(u,v) = int1d(Th, 1,3)(-shift* u*v)+int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v)); 
varf vB(u,v) = int1d(Th, 1,3)( u*v); 
while(L2Errorsq > 5.0E-2) 
{ 
   if (count > 0 && count < 5) // Adaptation step 
   { 
        Vh fAdapt = 0; 
        for(int i=1;i<numEigs;i++)               
             fAdapt = fAdapt +  abs(eV[i]); 
        Th = adaptmesh(Th,fAdapt,err=adaptErr); 
        adaptErr/=2.0; 
   } else if (count > 0) Th = splitmesh(Th,2);        
   // Get resulting matrices Ax=lBx 
   matrix A = vA(Vh,Vh,solver = sparsesolver); 
   matrix B = vB(Vh,Vh); 
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Code Snippet 14:  Code to solve Neumann BVP with FEM and adapted SEM. 

   // Solve Ax=lBx 
   numEigs = EigenValue(A,B,sym=true,sigma=0,value=ev,vector=eV); 
   numEigs = min(eigCount,numEigs); 
   L2Errorsq = 0.0; 
   for(int i=0;i<numEigs;i++)     
   { 
       Vh ssDiff = abs(abs(eV[i])-abs(eVold[i])); 
       L2Errorsq = max(L2Errorsq,int2d(Th)(ssDiff*ssDiff)); 
       eVold[i] = eV[i]; 
   }   count++; 
} 
// Construct solution 
real[int] c(numEigs); 
for(int i=0;i<numEigs;i++) 
{ 
   c[i] =(int1d(Th, 1)(g1*eV[i]) + int1d(Th, 3)(g2*eV[i]))/ ev[i]; 
   uhSEM = uhSEM + c[i] * eV[i]; 
   pSum[i] = uhSEM; 
} 
// Solve mixed DN FEM problem 
varf va(uh,vh) = int2d(Th)(Grad(uh)'*Grad(vh)); 
varf vb(uh,vh) = int2d(Th)(vh); 
varf vL(uh,vh) = -int1d(Th,1)(g1*vh) +  int1d(Th,3)(g2*vh);  // right wall    
// Capture # of degrees of freedom to construct mixed matrix 
int n1 = Vh.ndof+1; 
// Construct mixed matrix to solve mixed FEM problem 
//    A*uh + B*l = b   
//    B*uh=0 
matrix   A = va(Vh,Vh);   // Stiffness Block matrix A 
real[int] b = vL(0,Vh);    // Solution vector 
real[int] B = vb(0,Vh);    // Constraint block matrix 
real[int] bb(n1),   xx(n1), l(1);   // Modified sol vector for mixed problem, sol vector, lagrange multiplier 
matrix   AA = [[A,B],[B',0]];  // Mixed block matrix 
set(AA,solver=sparsesolver); // Set solver type on matrix 
bb = [b,0];      // Construct right hand side vector 
xx = (AA^-1)*bb; // Get solution vector 
[uhFEM[],l] = xx;   // Part of vector has solution, other has Lagrange multiplier 
// Plot solutions 
plot(uhSEM,value=true,fill=true,ColorScheme=2); 
plot(uhFEM,value=true,fill=true,ColorScheme=2); 
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Figure 45:  Adapted mesh for SEM method 
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Figure 46:  Solutions from both SEM & FEM procedures.  Horizontal particle streamlines and vertical contour lines are 
overlayed. 
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Figure 47:  Absolute difference of SEM & FEM solutions.  Some difference is revealed on the boundary. 

 

Figure 48: Vector field of potential showing flow of fluid across a circle. 
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Figure 51:  Relative errors for different norms comparing n-successive terms in the Steklov-expansion (x-axis) compared 
against solution produced by FEM (y-axis). 

 

Figure 52:  Spectral energy density given by 〈    〉 
 . 
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 Steklov Eigenvalue 

Relative   -Error 
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

Relative 
         
  SEM Terms 

Vs 
FEM Solution 

  Coefficient in SEM 
Expansions 

     
‖  

      
 ‖ 

‖    
 ‖  

 
‖  

      
 ‖ 

‖    
 ‖  

 
‖  
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‖    
 ‖  

 〈    〉  

0 -2.71E-13 1.60586 0.735374 0.971806 0 

1 0.487944 0.307714 0.065563 0.162729 3.8714 

2 0.710775 0.307713 0.065563 0.162729 2.12E-06 

3 0.856128 0.30771 0.065563 0.162729 -5.63E-06 

4 1.5648 0.30771 0.065563 0.162729 1.69E-07 

5 1.57491 0.052189 0.006097 0.029102 0.509559 

6 2.35564 0.052189 0.006097 0.029102 -4.80E-09 

7 2.35655 0.052189 0.006097 0.029102 -2.00E-07 

8 3.14157 0.052229 0.006097 0.029102 8.06E-05 

9 3.1416 0.01988 0.001543 0.011247 0.064619 

10 3.92699 0.01988 0.001543 0.011247 -3.90E-09 

11 3.92699 0.01988 0.001543 0.011247 -1.75E-09 

12 4.71239 0.020519 0.00123 0.009333 0.012501 

13 4.71239 0.010326 0.000594 0.005872 -0.01445 

14 5.49779 0.010326 0.000594 0.005872 -4.29E-10 

15 5.49779 0.010326 0.000594 0.005872 3.99E-09 

16 6.28319 0.010326 0.000466 0.004866 -0.0057 

17 6.28319 0.006294 0.000286 0.003588 0.005702 

18 7.06859 0.006294 0.000286 0.003588 9.48E-10 

19 7.06859 0.006294 0.000286 0.003588 3.72E-09 

20 7.85399 0.006294 0.000232 0.003058 0.002919 

21 7.85399 0.00423 0.000159 0.002414 -0.00292 

22 8.63939 0.00423 0.000159 0.002414 2.19E-09 

23 8.6394 0.00423 0.000159 0.002414 5.87E-09 

24 9.42479 0.00423 0.000132 0.002102 0.001689 

25 9.4248 0.003036 9.70E-05 0.001734 0.001689 

26 10.2102 0.003036 9.70E-05 0.001734 1.73E-09 

27 10.2102 0.003036 9.70E-05 0.001734 -6.57E-10 

28 10.9956 0.003036 8.20E-05 0.001534 -0.00106 

29 10.9956 0.002283 6.35E-05 0.001305 -0.00106 
Table 8:  Steklov eigenvalues for the inviscid flow around a circle.  Relative errors in different norms captured for n-
successive terms in the Steklov-expansion compared against solution produced by FEM. 
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9. Summary & Conclusions 

For two-dimensional regions, SEM is a viable methodology for calculating mixed DN BVPs and 

special types of harmonic vector field BVPs.  Analytical results for the eigenvalues for the cases with 

rectangular geometry were closely approximated by results using SEM.  Results using the direct FEM 

approach also agree with SEM eigenfunction expansion constructions.  The qualitative behavior 

observed in the electrostatic, contraction-expansion between parallel plates and flow around a circle 

align with expected results predicted in fluid mechanics and electrostatics. For the harmonic vector field 

cases, the fields were successfully constructed from the gradient of Steklov-eigenfunction expansions. 

The number of eigenfunction expansion terms is small and depends highly on the oscillatory nature 

of the boundary condition.  The higher the oscillation, the higher the number of terms involved in the 

eigenvalue expansion.  Even though a higher order eigenfunction may be required to completely capture 

the boundary, the function on the interior of the domain is reproduced in general with 10 to 15 terms.  

The larger eigenfunctions appear to be localized near the boundary while lower ordered terms cover the 

general domain.  This provides some evidence that boundary layer phenomenon is properly captured by 

Steklov-eigenvalue expansion techniques.  

Each example calculated in section 7 show good L2-converge while L-max and H1-convergence is 

less favorable.  The current calculation of the H1-norm  might need to be modified as it involves taking 

derivatives which is prone to numerical error.  L2-convergence results indicate that Steklov-

eigenfunctions appear to work in groups.  Once a certain level of convergence is achieved, a notable 

drop is noticed after an additional number of terms are included (depending on the group size).    This is 

indicated in the plot below for reference. 

 

Figure 53:  L2-convergence rates for the three harmonic BVP problems. 
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The spectral density plots reveal how the Steklov-eigenfunction terms respond to boundary 

conditions, how they are involved in the construction of the solution and how they individually 

contribute to the coefficient decay-rates.  The three harmonic vector field examples (parallel plates, 

contraction expansion, and flow around a circle) share similar boundary conditions.  The plot below 

reveals a relationship between spectral energy density and the problem geometry.  The second group of 

eigenfunctions appears to reveal the change in geometry experienced in the flow around a circle and 

contraction expansion examples.  The magnitude of the spectrum also is impacted by the region size.  

The oscillations and grouping pattern seen below is an indication of the influence of the boundary. 

 

Figure 54:  Spectral densities for the three harmonic vector field problems. 

The only major challenge observed in using SEM versus traditional FEM and mixed FEM approaches 

is the difficulty in capturing the localization of higher order Steklov-eigenfunctions.  A single mesh that is 

able to capture an entire range of Steklov-eigenfunctions and converge within bounds similar to FEM 

requires further investigation.  The localization of higher order Steklov-eigenfunction causes sharp 

gradients near the boundaries that can easily be missed if the mesh is not properly defined.  Using a 

uniform mesh becomes problematic as the number of finite elements becomes large.  An adaptive 

technique is the correct approach to take.  This project did not include a proper adaptation mythology.  

A posterior error estimate needs to be developed to properly create an adaptive algorithm.  This offers 

another area to further investigate. 
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SEM also has some promising implications.  Once the eigenfunction and eigenvalue spectrum is 

calculated, the intermediate results can be used to quickly reconstruct solutions.  For problems where 

the spectrum can be pre-calculated and applied to different boundary conditions, this approach is 

preferable to recalculating FEM several times as the recalculation using SEM only requires evaluating 

boundary integrals.  This approach is a competitor of the traditional boundary element method (BEM).  

BEM has the advantage of boundary integrals but suffers from integrating a potential which contains a 

singularity.  The BEM method also results in a full matrix while the SEM method results in a nice sparse 

matrix.  For time-dependent problems, the SEM approach may possess similar advantages.  If the 

spectrum only has to be calculated once, then there could be a major advantage of using SEM for 

problems that involve time.  Overall, SEM is a promising alternative for many types of problems. 
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10. Further Work 

(i) Extending to Axisymmetric 

In addition to solving planar flows, it is straightforward to extend SEM to solve harmonic bvps 

with axisymmetric cylindrical geometry.  This example will demonstrate how to calculate the Steklov-

eigenvalues and eigenfunctions in cylindrical coordinates assuming the Steklov-eigenfunctions do not 

vary in the tangential direction.  The geometry is assumed to be a cylinder or radius R and length L.  The 

outer wall of the cylinder is assumed to be impermeable while the left and right wall corresponding to 

the top and bottom are assumed to contain a flow with prescribed flux such that net flux across the 

boundaries is zero.  The geometry used to form the mesh is identical to the geometry used in the 

parallel plates and solid plate heat conduction problems.  The variational form is altered to account for 

axisymmetric cylindrical coordinates.  The Steklov-eigenvalue problem takes the classical form: 

Let  ( ) be the unknown fluid velocity in the cross-sectional region   (   )  (   ) of a cylinder.  

There is a velocity potential  ( ),   =    , that satisfies 
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subject to the Neumann boundary conditions 

  
  

  
(   )    (   ), 

  

  
(   )    (   )       [   ]  

( 74)  
 

  
(   )    (   ),    

 
  

  
(   )    (   )          [   ]     

( 75) 

   

  
(   )          [   ].    

  
(   )          [   ].    ( 76) 

 

The equivalent mixed variational formulation is to find     ( ) and     such that 

            (   )           , for all     ( ). ( 77) 

  here is the left and right walls. 

The FreeFEM++ code to solve the problem is shown below.  No mesh adaptation has been used.  A 

uniform dense grid is constructed instead.  
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Code Snippet 15:  Code that demonstrates solving an axisymmetric Steklov-eigenvalue problem. 

  

real       L   = 4.0;   
real       R = 1.0;   
border Left(t=0, R)        {x=-0;  y= R-t;   label=1;}    // Left wall 
border Top(t=0, L)        {x= L -t ; y= R;   label=2;}  // Top  wall 
border Right(t=0, R)     {x=L;         y=t;     label=3;}   // Right wall 
border Bottom(t=-0, L){x=t;     y=- 0; label=4;}  // Bottom wall 
 
// Construct a mesh 
mesh Th = buildmesh(Left(50) + Top(5*L) + Right(50) + Bottom(50)); 
fespace Vh (Th,P1);  // Create a P1-Lagrange FEM space 
Vh uh, vh;                    // Instantiate instances of finite element space 
      
// Create variational form for Steklov-Eigenvalue problem 
// x is z, y is r 
varf va(uh, vh) = int2d(Th)( y*( dx(uh)*dx(vh)+dy(uh)*dy(vh)));          
varf vb(uh, vh) = int1d(Th,1,3)(y* uh * vh);  
 
// Construct matrices to solve eigenvalue problem 
//    A*x=l*B*x  
matrix A = va(Vh, Vh ,solver = sparsesolver);     // Matrix A on left hand side 
matrix B = vb(Vh, Vh);                                             // Matrix B on right hand side 
 
int eigCount = 33;             // Get first 6 Eigenvalues 
real[int] ev(eigCount);   // Holds Eigenfunctions 
Vh[int] eV(eigCount);           // Holds Eigenvalues 
 
// Solve Ax=lBx 
int numEigs = EigenValue(A,B,sym=true,sigma=0,value=ev,vector=eV); 
numEigs = min(eigCount,numEigs); 
 
for(int i=0;i<numEigs;i++)  // Plot the spectrum 
     plot(eV[i],fill=true,value=true,cmm= ev[i]); 
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(ii) Extending to 3D 

In addition to solving axisymmetric flows, it is also straightforward to extend SEM to solve 

harmonic bvps in a 3D cylinder.  The parallel plate’s formulation can easily be generalized to 3D.  Here, 

flow is allowed across cylinder wall.  This is to simplify demonstration.  The Steklov-eigenvalue problem 

takes the classical form: 

Let  ( ) be the unknown fluid velocity in a cylinder   (   )  (    )  (   ).  There is a velocity 

potential  ( ),   =    , that satisfies 

   ( )                ( 78) 

subject to the Neumann boundary conditions 

   

  
     on   . 

 

( 79) 

The equivalent mixed variational formulation is to find     ( ) and     such that 

                      , for all     ( ). ( 80) 

 

It is a little bit more involved to create a 3D mesh in FreeFEM++.  The cylinder mesh will be 

created using external library calls to software called “medit” and “tetgen.”  “medit” is used for 

generating the perimeter, similar to the border command. “tetgen”  is a program used to tetrahedralize 

the cylinder.  All integrals are 3D now.  The FreeFEM++ code to solve the problem is shown below.  No 

mesh adaptation has been used. 
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Code Snippet 16:  Code that demonstrates solving a 3D Steklov-eigenvalue problem on a cylinder. 

 

 

load "msh3" 
load "tetgen" 
load "medit" 
int nx=10;  // Number of points along axis 
int nth=50; // Number of points along circumference 
real xmin=1.,xmax=3.; 
border cc(t=0,2*pi){x=cos(t);y=sin(t);label=1;}  // Create a circle border 
mesh Thcircle = buildmesh(cc(nth));  // Build a 2D mesh from the circle 
mesh Thsquare=square(nx,nth,[xmin+x*(xmax-xmin),2*pi*y]);  // Build a rectangle mesh next 
// Parameterization construct a 3D mesh from 2 2D meshes 
func f1 = x; func f2 = cos(y); func f3 = sin(y);  // Cylindrical coordinates 
mesh3 Thsurf1=movemesh23(Thsquare,transfo=[f1,f2,f3],orientation=-1); // Cylinder surface  
mesh3 Thsurf2=movemesh23(Thcircle,transfo=[xmin,x,y],orientation=-1); // Top 
mesh3 Thsurf3=movemesh23(Thcircle,transfo=[xmax,x,y],orientation=1);  // Bottom 
mesh3 Thsurf=Thsurf1+Thsurf2+Thsurf3;  // Put the meshes together 
real voltet= ( ( (2*pi)/20 )^3 )/6.; real[int] domaine = [1.5,0.,0.,1,voltet]; // Tetgen params 
mesh3 Th=tetg(Thsurf,switch="pqaaAAYYQ",nbofregions=1,regionlist=domaine); // Mesh it! 
 
fespace Vh(Th,P2);  // P2 finite element space 
// Steklov-variational problem 
varf vA(u,v) = int3d(Th)(dx(u)*dx(v)+dy(u)*dy(v)+dz(u)*dz(v)); 
varf vB(u,v) = int2d(Th)(u*v); 
// Convert variational forms to matrices 
matrix A=vA(Vh,Vh,solver=sparsesolver); 
matrix B=vB(Vh,Vh); 
 
// Calculate first 15 eigenvalues/eigenfunctions 
int eigCount = 15; 
real[int] ev(eigCount); Vh[int]   eV(eigCount); 
 
// Solve the eigenvalue problem 
int numEigs = EigenValue(A,B,sym=true,sigma=0,value=ev,vector=eV); 
numEigs = min(eigCount,numEigs); 
 
// Plotting parameters to slice a plane in picture 
real[int] CutPlaneOriginValue = [0.0,0.0,0.0]; 
real[int] CutPlaneNormalValue = [0.0,0.0,1.0]; 
for(int i=0;i<numEigs;i++) 
   plot(eV[i],cmm=ev[i], dim=3,value=true,boundary=0,CutPlane=0, 
              CutPlaneOrigin=CutPlaneOriginValue,CutPlaneNormal=CutPlaneNormalValue,ColorScheme=2); 
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