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A prerequisites and course description are available on my
web site. A syllabus with lots of official information is now
available on the Access UH website

This course will not follow any current text very closely.
The theory of interest has been studied since biblical times

in many different parts of the world. It is essential for all trade and
business as merchants ( people who buy and sell goods ) are in
the situation where they pay for the goods at one time and then
receive payment from someone else later.

Bankers, pawnbrokers, mortgage companies, factors and
many different types of lenders make their living by arranging
transactions that include interest charges. Interest is the cost of
borrowing, or lending, money. The mathematical theory of
interest is the study of the formulae involved.



Will and Ariel Durant in ”The Lessons of History” said

... those who manage money manage all.

For a long time this was a topic where there were few laws.
The Truth in Lending Act was only passed in 1968 and provided
some legal definitions that will be used here - including APR

This course is about the formulae used for managing money
- assuming that everyone is honest and pays. In practice there
always is a possibility of default or someone not paying what the
owe. This means that you must add probability theory to the
calculations. So one of the first required actuarial exams is on
probability theory + interest theory.



The essential results that you should learn from this course
include

I the formulae for loans and mortgages.

I How to evaluate the present value of a string of payments -
such as pensions and annuities.

I How to price treasury bills and government bonds. The
evaluation of current yield, duration, convexity.

I How leverage affects returns on bonds and other
investments.

I Formulae for the evaluation of portfolios.

Probability theory is not a prerequisite for this course and
will not be used, or needed, here. But to apply the ideas to real
world situations, you do need to include probabilistic ideas.



Unfortunately there is no text that describes the simple
mathematics behind each of these topics. Hence no required text
for the course. When I first taught this course I used the book
The theory of Interest, 3rd ed, Stephen G. Kellison, McGraw Hill

More recently An Introduction to the Mathematics of
Money, Lovelock, Mendel and Wright, Springer, has been used
as a text.

There are hundreds of thousands (sometimes millions) of
postings on the Web about each of these topics. Wikipedia has
lots of articles on various aspects. In general I’ll try to use actuarial
notation (as in Kellison’s text) but some of that notation is rarely
used now and everybody now uses spreadsheets for most of their
calculations.



Neither of the above texts uses spreadsheets, or personal
computers. They are outdated for teaching - but the theory hasn’t
changed. It is also hard to use more than 1 source for this material
as everyone seems to have a different notation.

You will need to use spreadsheets for doing the homework. If
you don’t already have one that you know how to use; I suggest
Apache OpenOffice which is free and can be downloaded in
versions for most operating systems and languages.

A lot of the theory here uses the same mathematical ideas as
is used in biology for describing growth and population dynamics.
Plants and critters breed rather than earn interest - but the
formulae for their population and size are similar and have similar
proofs.



Growth Factors and Interest rates

Throughout this course we will be using the symbol Am for
an amount at time tm and Am is usually measured in units of US
dollars, (sometimes thousands or millions of US dollars.)

At increasing times {t0 < t1 < t2 < . . . < tm < . . .} suppose
the value of an account is {0 < A0,A1,A2, . . . ,Am, . . .}. Then the
ratio

fm :=
Am

Am−1
is called the m-th growth factor

of the account and measures the change between times tm−1, tm.
Equivalently the value of the account satisfies the equation

Am = fm Am−1 for m = 1, 2, 3, . . . .



The interest rate in the m-th time interval is rm where
fm := 1 + rm. Note rm := fm − 1 usually is a small number - and
hopefully positive.

Example 1. A person puts $1,000 in a bank account that pays
interest of 1% a month for 12 months. How much does she have
after each month and at the end of a year?

At each time tm, an interest payment of $Am−1/100 for the
period (tm−1, tm) is added to the account so

Am = 1.01 Am−1 with A0 = 1000.

That is she receives $10 after 1 month, $10.10 (or 1% of $1010 )
for interest in the 2nd month etc.

The growth factor for this account is f = 1.01 and the
interest rate is r = .01 = 1% and do not depend on m.
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Note that both growth factors and interest rates are simple
numbers. A percentage x% is just the number x/100. For example
5% is the number .05 = 5/100.

If an account has a uniform interest rate f = 1 + r for M
time periods, then the value of an account at time tm when it
started with initial amount A0 has

A1 = f A0, A2 = f 2 A0, A3 = f 3 A0, A4 = f 4 A0, . . .

That is
Am = f m A0 = (1 + r)m A0 (1)

This is the Compound Interest Formula.
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In finance we usually just determine amounts at discrete
times, such as daily, weekly, monthly, every quarter, half-year or
year.

Then the growth factors and interest rates are per day, per
week, per month, ... You may think that an interest rate of 1% per
month, would be the same as 3% per quarter, 6% per half-year or
12% per year - but they are NOT.

As an exercise evaluate the value after 1 year of the account
that had an initial amount $1,000 and had each of these
compounding rates.

A calculator yields that
(1.01)12 = 1.126825, (1.03)4 = 1.12551, (1.06)2 = 1.1236
so after 1 year she would have respectively

$1126.82, $1125.51, $1, 123.60 and $1120.00
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The difference here could be up to $7 or so depending on
how often the interest is compounded. The more often a given
nominal annual rate of interest ra is compounded, the larger the
interest amount.

When you earn interest at an annual rate of ra compounded
k times a year, then the amount is given by

Am =
(

1 +
ra
k

)
Am−1 so Am =

(
1 +

ra
k

)m
A0

is the value after m time periods (or m payments).

This is why banks and brokerages usually charge daily
interest rates on loans, mortgages usually have monthly interest
payments while bonds usually pay interest only every 6 months.



The reason that they are different follows from the binomial
theorem - which you should have seen in high school algebra or
Wikipedia. It says

(1+r)2 = 1 + 2r + r2, (1+r)4 = 1 + 4 r +6 r2+4 r3 + r4

(1 + r)12 = 1 + 12 r + 66 r2 + 220 r3 + . . .

There will be 13 terms in this last expression and in general
(1 + r)m has (m+1) terms.

Exercise Find the formulae for (1 + r)3, (1 + r)5 and the general
(1 + r)m. The coefficients here may be evaluated using Pascal’s
triangle. What is that?



Since the actual growth depends on how often interest is
compounded, the federal law now requires that whenever an
interest rate is given, and in additon to what ever nominal
formula is described, the annual percentage rate APR must
be given. The APR of an account is r̂ := f̂ − 1 where f̂ is the
growth rate on the account over 1 year or

f̂ := A1year/A0

This enables a person to compare the cost of different interest
formulae. Two sets of compounding formulae are said to be
equivalent if they yield the same APR and annual growth rate.

In
the preceding example the APRs are, respectively,

0.1268 = 12.68%, 0.1255 = 12.55%, 12.36% and 12%

depending on whether they are compounded monthly, quarterly,
half-yeraly or annually.
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Exercise. What is the APR of a nominal interest rate of 0.12 =
12% compounded daily? Find the various interest rates of any
loans or credit cards that you, or your family, maintain. See what
different rates they describe and see if you can verify their
equivalence.

The Compound Interest Formula is the basic formula for
doing any calculation in interest theory.

Am = f m A0 = (1 + r)m A0 (2)

Note that it involves 4 variables A0,Am, r and m. It is an
equation, so whenever three of these numbers are given, there are
ways to find the possible value, or values, of the fourth.

Problem 1. The simplest calculation is given A0,m, r , to find
Am. This problem was solved earlier.



Problem 2. A variation on Problem 1 is to ask how much you
need to invest in this account if you want to have an amount
$1,000 after 1 year? That is, given m = 12,A12 = 1000, r = 0.01
to find A0.

In this case the equation becomes

1000 = 1.126825 A0 since 1.0112 = 1.126825.

so A0 = $887.45

The general solution is A0 = (1 + r)−m Am

This is the expression for the initial amount as a function of
the final amount, the nominal rate and the number of payments.



Problem 3. Another question that you can ask is given an
interest rate, how many payments are needed before the account
doubles in value?

When the account doubles in value then the associated
growth factor is 2, so you must solve the equation

(1 + r)m = 2

Take natural logarithms (to base e) of both sides, then

m ln (1 + r) = ln 2 or m =
0.693147

ln (1 + r)

This is the formula for the doubling time. From Taylor’s
theorem for the logathmic function and |r | < 1, one has

ln (1 + r) = r − r2

2
+

r3

3
− r4

4
+ . . . .
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When r=.01, the values of the Taylor approximation using
1,2,3 terms and the exact value are

0.01, 0.00995, 0.00995033, 0.009950331

so with 3 terms of the Taylor approximation you have the exact
value to 8 decimal places. In fact a simple approximation for the
doubling time is that

m =
0.7

r

Example When the interest rate is r = .01 per time period, the
exact and the approximate answers for a doubling time M are

M =
0.693147

ln (1.01)
= 69.66 and M̃ =

0.7

.01
= 70.

That is it takes 70 payments for the initial investment to double.
When the payments are made monthly this is about 5.8 years or 5
years and 10 months.



Problem 4. The final problem is simple if you have a calculator,
but hard if not. Namely if you are given the initial and final
amounts and the number of interest payments, what is the interest
rate? When m=1 or 2, this can be solved using simple algebra.
(Find the answers). When m ≥ 5, the answer requires calculus -
not algebra.

Suppose that a person put $1,000 into an account that paid
monthly interest and after 12 payments had $1,120. What was the
nominal monthly interest rate?

In this case m=12, and
(1 + r)12 = 1.12. Then r = 1.12(1/12) − 1 = .0094888 or
about 0.95% per month.
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There is a general formula here. From the CIF, one has

(1 + r)m =
Am

A0
so m ln (1 + r) = ln Am − ln A0

∴ 1 + r = exp (m−1 [ln Am − ln A0]).

Sometimes this formula is approximated using the Taylor
approximation for the exponential function which we will also use
later. For x near zero one has

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . . .

So evaluate X := m−1 [ln Am − ln A0] then the interest rate is
approximately

R = X +
X 2

2
+

X 3

6
+

X 4

24



Account Equations

Most accounts involve the payment of interest each period
together with either deposits or withdrawals for an account during
the period. For such accounts, the balance in each time period is

Am = fm Am−1 + cm for m = 1, 2, 3, . . . .

Here fm = 1 + rm is the m-th growth factor and cm is the
contribution in the m-th time interval. When cm < 0, then there is
a withdrawal from the account.

In the following please find, and write up for your own
benefit, any algebra and calculus term or theorem that is
used. They will be needed repeatedly



For mathematical analysis we will just treat the case wher
the interest rate and the contributions are constant. This holds if
it is a savings account based on payroll deduction or a retirement
account where there are equal contributions every time period.

Then the equation becomes

Am = (1 + r) Am−1 + c for m ≥ 1

By repeated substitiution one sees that the solution of theis
equation is

Am = (1 + r)m A0 + c [1 + f + f 2 + . . .+ f m−1]

(Verify this for m=1,2,3 please.)



This may be simplified by using the formula for geometrical
sums - which you should have seen in high school. it says that

1 + f + f 2 + . . .+ f m−1 =
f m − 1

f − 1
when f 6= 1

Question Find this sum when f=1 and then obtain the formula
for Am when r=0. Does your answer make sense?

For r 6= 0, the solution of a uniform account equation is

Am = (1 + r)m A0 +
c

r
[(1 + r)m − 1]] for m ≥ 1. (3)



For any value of r, the expression (1 + r)m is a
polynomial of degree m in r, that has the form

(1+r)m = 1 + m r +
m(m − 1)

2
r2 +

m(m − 1)(m − 2)

6
r3 + . . .

from the binomial theorem. The . . . indicates powers of r4, r5

and higher order powers when m is larger.

The linear approximation of a solution is

Am = (1 + r)m A0 + c m

[
1 +

(m − 1)

2
r

]
(4)



The quadratic approximation of a solution includes the r2

term and is

Am = (1 + r)m A0 + c m

[
1 +

(m − 1)

2
r +

(m − 1)

6
(m − 2) r2

]
(5)

Example Suppose a person has an account that pays 1% per
month. She makes and initial deposit of $1,000 and then adds $50
each month. What is the balance in the account after one year?

Comments: Any time you have a problem like this I suggest that
you start by guessing an approximate answer. In this case, if no
extra contributions were made, you know from the compound
interest formula, that the $1,000 will become more than $1,126.
Then she added $600 in contributions. So the answer is probably
larger than $1,730 - thanks to the interest on her contributions.
This is just a guess - and you may want to guess another number.



This account equation is to find A12 where

Am = (1.01) Am−1 + 50 and A0 = 1000.

This has solution

Am = (1.01)m(1000) +
50

.01
[(1.01)12 − 1]

When m=12, this becomes, using the value of the powers here

A12 = 1126.825 + 5000(.126825) = 1126.825 + 634.125

or $1760.95.

Note that if the approximation had been used with
just one power of r, there contributions would have yielded
50(12 + 66(.01)) = 633. With 2 powers of r, the approximation
becomes 50(12 + 66(.01) + 220(.0001) = 50(12.6820) = 634.1
which is correct to less than 3 cents
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Note that our guess and all the approximations are below
the exact answer. Also notice that these formulae require the use
of the binomial theorem from algebra and Taylor’s theorem for
approximating functions in calculus 1. These theorems will be used
repeatedly in this class - and in financial calculations - so make
sure that you know them.

The solution of an account equation gives Am as a function
of the 4 quantities, A0, c ,m, r . Thus it is an equation in 5
variables. If you know 4 of these quantities then you chould be able
to find the fifth. I will give some homework problems of this type.



Another example is a simple college savings plan or other
gift plan. Suppose your parents, grandparents or favorite aunt
decides to save on a regular savings plan so they can give you a big
gift on your 21st birthday, for your college expenses or whatever.

They invest in a program, or possibly buy an insurance
policy, that will pay you $10,000 at a certain time in the future
provided you pay a certain amount $A0 now and contribute $c per
month. These savings accumulate at a certain interest rate, say
0.5% a month payable monthly.

Usually the questions are either
(i) How much do they need to pay iniitialy if they can afford to
contribute $100 a month and it will be 60 months in the future? or
(ii) If they can put $5,000 now into such an account what
monthly payments do they have to make?
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Answer (i) The problem is to find $A0 given that

m = 60, A60 = 10, 000, c = 100 and r = 0.005.

The solution of the account equation (3) becomes

10000 = (1.005)60 (A0 + 20000) − 20000

as c/r = 20000. Thus

A0 + 20000 = 30000/1.34885 = 22241.17

or A0 = 2241.17 is the exact answer for this problem. It may
be rounded to $2250 initially plus $6,000 in total contributions +
interest payments of about 6% per year for 5 years.



The linear approximation here leads to the equation

10000 = (1.005)60 A0 + 6000 (1 + 29.5(0.005))

10000 = (1.005)60 A0 + 6000 (1 + 29.5(0.005))

1.34885A0 = 10000 − 6885 = 3115

This yieds that A0 = 2309.37 - which is a larger amount than
the exact answer as we have undercounted the interest earned.

Similarly you can determine the value of A0 from the
quadratic approximation and this will be less than 2309 and more
than 2242.



Examples such as these show that even the simplest interest
theory problems are completely changed by the advent of
computers and programs that guarantee the correct solutions using
good mathematics for solving equations.

Moreover if you decide to change the interest rate or the
number of years in these solutions, and you have a spread sheet - it
is quite straightforward. The second homework will ask you to
develop a spreadsheet that does these caculations for a problem
like this. The important thing is to have the spread sheet - then
you can plug in whatever are the relevant numbers and see what
the answer is.



Answer (ii) The problem is to find $C given that

m = 60, A0 = 5000, A60 = 10000, and r = 0.005.

The solution of the account equation (3) becomes

10000 = (1.005)60 5000 + 200C (0.34885)

as 1/r = 200. Thus

69.77C = 3255.75 or C = 46.66

To check this note that 60 payments of $47 is $2820 and
together with the initial $5000 they contribute $7820 towards the
10K value at the end. This earns much more interest as it starts at
5K instead of less than 2.3K in the previous calculation.



Similarly for this problem one can ask about finding r or m
when the other 4 variables are known. It is high school math to
show how the equations can be ”rearranged” so that there is the
unknown on one side of the equation and numbers on the other
side, so you just have to do a direct calculation.



Loan Amortization

The same formula is what is used to study how youy repay a
loan. When you take out a loan, the balance on the loan satisfies
an account equation with A0 large and each payment
corresponding to a negative value of c. If a borrower makes a
payment of $P each time period and the interest rate is r, then the
balance on a loan is given by

Am = (1 + r) Am−1 − P for m ≥ 1

The solution of this equation is given as above and usually one
wants to know either when the loan is paid off of what the
payment should be to pay off the loan in a given time - such as 2
years, 5 years etc.



The loan repayment formula says that if you have a loan of
$L at an interest rate of r per time period, and make regular
payments of $P, then after m time period the outstanding balance
on the loan is, from the solution of the account equation

Am = (1 + r)m L − P

r
[(1 + r)m − 1]] for m ≥ 1. (6)

Usually the questions about this loan is what should P be to
pay the loan off in M payments, or what is the value of M such
that this loan is paid off with regular payments of $P.

Note that this formula doesn’t involve the actual time
period. The answers are the same whether we take the time period
to be days, weeks, months or years!



If the loan is paid off in M time periods, then AM = 0 so one
has

P

r

[
(1 + r)M − 1]

]
= (1 + r)M L (7)

That is

P = p(r ,M)L with p(r ,M) =
r (1 + r)M

[(1 + r)M − 1]
(8)

This says that the payment is linear in the loan amount L -
which makes sense but it is a complicated function of r and M.
This function is an increasing function of r for fixed M and a
decreasing function of M for fixed r.



This is proved by evaluating the partial derivative of
p(r ,M) with respect to r,M respectively. Suggest that you try
this, we’ll look at this later.

The next few slides are to remind you of some calculus
results that will be used a lot. Suggest that you review the reasons
why they hold and perhaps try to see which apply to various
formulae described so far.



Monotone and convex functions

Suppose that a function f (x) is defined for a ≤ x ≤ b and let
I = [a, b] be this interval. The function f is said to be

(i) increasing on I provided f (x1) ≤ f (x2) whenever
a ≤ x1 < x2 ≤ b.

(ii) strictly increasing on I provided f (x1) < f (x2)
whenever a ≤ x1 < x2 ≤ b.

(iii) decreasing on I provided f (x1) ≥ f (x2) whenever
a ≤ x1 < x2 ≤ b.

(iv) strictly decreasing on I provided f (x1) > f (x2)
whenever a ≤ x1 < x2 ≤ b.



In calculus I you should have learnt that when f is
differentiable on the open interval (a,b), then

(a) the function f is increasing (decreasing) on I whenever
f ′(x) ≥ (≤)0 for x ∈ (a, b).

(b) the function f is strictly increasing (strictly decreasing)
on I whenever f ′(x) > (<)0 for x ∈ (a, b).

The function is (strictly) monotone on I if it is either
(strictly) increasing or decreasing on I.



The function f is said to be convex on I provided for all
x1, x2 ∈ I , 0 ≤ t ≤ 1,

f ((1− t) x1 + t x2) ≤ (1− t) f (x1) + t f (x2)

This says that the function f (x) lies below the straightline joining
the points on the graph of f at x1, x2.

Evaluate the derivatives to show that a quadratic function
f (x) := ax2 + bx + c is convex if a ≥ 0, increasing if it is convex
and b ≥ 0. What are the conditions that f be strictly increasing?

The function f (x) := ax is strictly increasing and convex
when a > 1.



In general when f is continuously differentiable and the
derivative f ′(x) is increasing on (a, b), then f is convex.

When f is twice continuously differentiable and f ”(x) ≥ 0
on a < x < b, then f is convex on I.

The function f is concave on I when each ≤ is replaced
by ≥ above. Alternatively f is concave when −f is convex.

The function l(x) := loga x is strictly increasing and
concave when a > 1, x > 0. For many of the formulae in finance
and the theory, it is important to prove inequalities for the values
of functions and their derivatives - as you will see. You just need
to know how to calculate the derivatives.



Example. Show that the doubling time for a simple savings
account with interest rate r is strictly decreasing and convex.
Proof. The doubling time is given by the function
g(r) := ln 2/ ln (1 + r) with r > 0. Evaluate the derivative

g ′(r) =
dg

dr
(r) = . . .

Observe that this derivative is always negative and you can verify
that g ′(r) is an increasing function of r. Since the function
ln (1 + r) is strictly increasing, g is strictly decreasing.

If you are an ace at calculus, you might get the right answer
for the second derivative of g(r). Suggest that you use a
spreadsheet or a program to graph this function - and its first
derivative to show that the function is convex.



Very often with compound interest the interest rate changes
each time period, and is given by

Am = (1 + rm) Am−1 = fm Am−1 for m ≥ 1.

Then the first few values are

A1 = f1A0, A2 = f2 f1 A0, A3 = f3 f2 f1 A0, ...

In general
Am = fm fm−1 . . . , f2 f1 A0



Often we replace all these different growth factors by a
single average growth factor to do calculations. This growth factor
will be the solution of

f m = fm fm−1 . . . , f2 f1

This number is called the geometric mean of the positive values
f1, . . . , fm and is given by

fg := [f1 f2 . . . , fm−1 fm ]1/m

It is easy to prove that for 2 positive numbers x1, x2

√
x1 x2 ≤ (x1 + x2)/2

or the geometric mean of two numbers is less that the usual mean
value.



This geometric mean is an equivalent growth factor for
which we can use the formulae for constant (or uniform) growth.
When each fm = 1 + rm, the equivalent uniform interest rate is
rg where

fg = 1 + rg

The solutions of the uniform interest payments case with the
equivalent uniform rate and the variable interest rate cases usually
are very close. So when there are variable interest rates, people
often just evaluate the equivalent uiform rate and use the formulae
we’ve obtained earlier.

How good this is, requires a lot more calculus which is why
mathematicians are useful for some calculations in finance.



The arithmetic-geometric mean inequality (AGM) is
the fact that for any M positive numbers a1, . . . , aM , this still
holds. That is, the geoemetric mean of M positive numbers is less
than the arithmetic mean unless they all are equal.

ag := [a1 a2 . . . , aM−1 aM ]1/M ≤ 1

M
[a1 + a2 . . .+ aM−1 + aM ]

The arithmetic mean will usually be denoted

a :=
1

M
[a1 + a2 . . .+ aM−1 + aM ]

so the AGM inequality is that ag ≤ a. Sometimes one also
use the obvious fact that

ag ≥ ã with ã = min {a1, . . . , aM}.

when you want to check a calculation.



Example. Suppose that a dealer lends you $10,000 to help pay
for a car. You have good credit, so he charges a nominal interest
rate 0.06 = 6% per year payable monthly for 2 years. How much
will each payment be? What is the total payment and how much
interest will you pay?

First note that the paperwork should tell you this loan has
APR 0.0617 = 6.17%. Why this rate? Use the formula with
M = 24, r = 0.005 then (1.005)24 = 1.12716 so

p(r ,M) =
0.0056358

0.12716
= 0.0443205

This each payment is P = 443.21
Your total payment is 24P = 10636.93 and the total

interest payment is $636.93.



Earlier we used the fact that

(1 + r)M = 1 + Mr
[
1 + br + cr2 + . . .

]
with b = (M − 1)/2, c = (M − 1)(M − 2)/6 and said that
usually in calculations we only need these terms in most
evaluations. The formula for the M uniform payments P on a loan
of L dollars with interest rate r per time period becomes, when
br , cr2 can be neglected

P = p0(r ,M) L with p0(r ,M) = r +
1

M

In the previous example this is 0.0466.67 for payments of 466.67
per month.



The linear approximation, which neglects cr2 is

P = p1(r ,M) L with p1(r ,M) = r +
1

M(1 + br)

The quadratic approximation is

P = p2(r ,M) L with p2(r ,M) = r +
1

M(1 + br + cr2)

Since b, c > 0 when M ≥ 3 these factors decrease as more terms
are included.

You can do the calculations for the auto loan above. For
each of these approximations, you may check to see if they are
increasing functions of r and decreasing fuctions of M



In view of these formulae, you can also look at questions
such as, if you can only afford to make payments of about $360 a
month on the car, then how many payments will you have to make?

You can write an algorithm to solve this exactly. However
could also. just take the simplest approximation and see that at
this interest rate you want

(.005 + 1/M) 10000 ≤ 360

This yields M = 62.5 so it seems that a 5-year loan with 60
payments should work. Suggest that you evaluate the exact cost of
such a loan.



Similarly, if the dealer says that they will lend you the funds
with repayments of $450 per month for 24 months, then you know
that they are charging you a slightly higher APR than 0.0617 =
6.17% .

If you want to find the interest rate that is being charged
then you would have to solve the equation

r (1 + r)M

(1 + r)M − 1
=

P

L
= : ρ

Here ρ is the proportion of the regular payment to the original loan
amount. Note that you must have MP > L when the interest rates
are positive, so ρ > 1/M and the interest rate is a positive solution
of the equation

(1 + r)M(r − ρ) + ρ = 0



Let x := 1 + r , then this equation becomes

f (x) := xM+1 − (1 + ρ) xM + ρ = 0 (9)

This is the interest rate equation for a loan. To find the interest
rate, solve this equation for a solution x̂ near 1 and then the
interest rate will be r̂ := x̂ − 1.

There are algebraic formulae for the solutions of these
equations when M=1,2 and 3 but not in general for M ≥ 4.
However, x̂ = 1 is a solution with f ′(1) < 0 when ρ > 1/M.
Thus f (x) is below 0 for x > 1 and close to 1. It is easy to show
that there is no solution of this equation larger than 1 + ρ. Some
more calculus shows that there is a unique solution with

xM :=
M(1 + ρ)

M + 1
< x̂ < 1 + ρ.

as f (x) is strictly increasing for x > xM .



Computing Zeros of Equations.

The simplest algorithm for solving the equation f (x) = 0,
when one knows values x1, x2 with f (x1) < 0 < f (x2) is the
bisection method. It is guaranteed to yield a solution when f is
continuous on I := [x1, x2] and it will be the unique solution if
f ′(x) > 0 on I. This is the intermediate value theorem from
calculus I.

Usually one just seeks to find a value x̃ with |f (x̃)| < εwhere
ε > 0 is a small number. If one want f (x) to be zero to 3 decimal
places, take ε = 0.0005. Sometimes we just want the answer to
some accuracy δ.



The Bisection Algorithm.

The bisection algorithm is given I1; = [x1, x2], f and δ, ε as above,
Step 1. For j ≥ 1, Ij := [x1, x2], evaluate |Ij | = x2 − x1,
ξ = (x1 + x2)/2, and f (ξ).
Step 2. If |Ij | < δ, or |f (ξ)| < ε take ξ to be the solution and
stop.
Step 3. Otherwise when f (ξ) ≥ ε, replace x2 by ξ so that
Ij+1 = [x1, ξ]. If f (ξ) ≤ −ε, take Ij+1 = [ξ, x2] and go to step 1.

With this algorithm, one sees that |Ij+1| = |Ij |/2 so the
interval containing a zero decreases in size by a factor of 2 at each
step. It guarantees that in a finite number of steps either |Ij | < δ,
or |f (ξ)| < ε, so we have found an approximate zero of the
function f (x).



It is quite easy to implement a spreadsheet program to use
the bisection method for solving an equations such as the interest
rate equation. Note you only have to evaluate the function f (x) -
no derivatives or any other functions are required. Please write you
own spread sheet program to solve equations of the form
(1 + x)m = 2 with m=2 -10. These provide formulae for doubling
times for a simple compound interest problem. The first step is to
make good choices for x1, x2. Choose sime good guesses.

if you have that when x1 < x2 one has f (x1) > 0 > f (x2)
so there still is a zero in the interval, then use g(x) := −f (x) and
the function g will have the properties required for the bisection
algorithm to work.



Present Value of a future Payment

People value a payment of $P more highly today than the
promise of a payment of the. same amount at some time in the
future. Also it is worth more if it will be1 week in the future
compared to 1 month in the future, 1 year in the future or 5 years
in the future. That is the longer you have to wait the lower the
present value PV.

Suppose it costs $ PV today to buy a contract for an
amount of $ A in T years time, then the discount rate d(T)
of this contract is

d(T ) :=
PV

A
or PV = d(T ) A

Here PV is the present value of the payment $ A in T years time
and d(T) is usually between 0 and 1.



The annual discount rate of this contract is

da := d(T )1/T

Discount rates measure the time value of money and may be
related to interest rates. An annual discount rate corresponds to
an APR of ra where

da =
1

1 + ra
or ra =

1− da

da

Discount rates may also are quoted in terms of weeks, months or
other time periods.

See Wikipedia, or other internet sites, for descriptons of
these ideas with many different notations and conventions. The
important aspect is that in these contracts, the amount to be
returned at time T is the fixed amount $A and the “price” is the
immediate cost of this promise - that is, the present value.



Example. Four grandparents want to make a gift of $10,000
cash to a grandchild on her 21st birthday in 3 years time. Some
are in ill-health and are not sure that they will be around, or have
the money then, so they pay $9,700 for a certificate of deposit in
her name that will be worth $10,000 when it matures 3 years later.

Here the 3-year discount rate is d(3) = 0.97 so the annual
discount rate is 0.98990 which corresponds to earning an APR of
0.0111 =1.11%. Suggest that you check this, and all similar
evaluations so you know what formulae are used.

Example. A company has just made a big sale and realizes that
it will have to pay the governent at least a million dollars in taxes
in 6 months time. The cost of a 6-month T-bill is $990 so it buys
1000 such bills to ensure that it can pay this amount. What is the
annual discount rate, and APR, of these bills?

The discount rate of these bills is d(1/2) = 0.99, the
annual discount rate is da = 0.992 = 0.9801 and ra is 2.03%..



These contracts are also called a single premium annuity and
may be arranged with banks, various brokers and some government
agencies as well as with individuals and companies. The federal
government sells T-bills in multiples of a thousand dollars and for
different time lengths via auctions.

If you search Wikipedia, or the internet for annuities,
certificates of deposit, zero-coupon bonds or similar keywords you
will find many different businesses that will be pleased to take your
money now in exchange for some promise to pay you back in the
future.

Your primary concern should be whether they will actually
do so - or whether they will “default”. Government issued
contracts (T-bills, bonds, notes) are regarded as “riskless” or
“safe” - since the government also ”prints the money” or ”controls
the currency”. However even governments occasionally default on
their promises; particularly after wars.



Annuities

An annuity is a series of payments at specified times in the
future. Examples include

the payout of lottery prizes as amounts of $P each year for
20 or 30 years,

Divorce, injury or other legal payments of $P a month for a
specified number of months.

Many people buy retirement annuities that pay $P each
month, or quarter or ... for a fixed number of years starting at age
70 or some other age.

Many annuities are “ life annuities” that make payments for
the rest of a person’s life (such as social security payments and
many retirement programs). The mathematics of those depend on
the probability that a person will lives to various ages - so they
should use life tables and need probability theory for the
calculations. This is a big business for insurance companies.



If you search for annuity on the internet there are lots of
provider advertising and also of people who will advise you (for a
fee) on possible annuities to buy.

There also are many annuity calculators which essentially
just are small programs that do the calculations that I’ll describe
here. A good example is the Present Value of Annuity Calculator
at financialmentor .com who say they provide “Financial freedom
for Smart Prople”.

The following slides will describe the models and formulae
behind the simpler examples. Often people want to add extra
conditions and requirements to a ”boilerplate” policy.



Suppose an annuity consists of M payments of $ A starting
now and paid N times a year. An insurance company prices the
annuity at a uniform discount rate of da per year. Then the m-th
payment is due at time tm := m/N years from now and has
present value

PVm = (da)m/N A = dm A

where d = (da)1/N is the discount rate per payment.

Then the present value of the annuity is the sum of each
individual annuity so if it starts after 1/N years, then

PV = PV1 + PV2 + . . .+ PVM

PV =
[
d + d2 + . . .+ dM

]
A =

d (1 − dM)

1− d
A

using the formula for geometric sums.



More generally if the payment starts after K time periods
from now, then

PV =
M−1∑
m=0

dK+m A

and this sum is

PV =
dK (1 − dM)

1− d
A

Here K could be any positive number or even zero and measures
the “waiting time” to the first payment. These are the Annuity
Equations that say how much an annuity should cost at a given
discount rate.



The annuity equation may be written

PV = vMK (d)A with vMK (d) :=
dK (1 − dM)

1− d

Here vKM(d) is called the annuity factor. It is a decreasing
function of K, M and an increasing function of d for 0 < d < 1.
When M is very large, the distant (m large) payments have very
small present value. If M = ∞ these are called perpetuities,
that have an infinte payout but finite present value!

The present value of a perpetuity of $A per payment,
starting K time periods from now at a discount rate d is

PVP :=
dK

1− d
A



These are promises to pay “forever” and are not legal in
most states and countries but are often used for pricing annuities
with M very very large such as for 100-year leases for property.

Note that a lease with uniform fixed payments at fixed times
(weekly, monthly, quarterly, etc) is a simple annuity. Usually to
evaluate the present value of a lease, you need to treat deposits
separately.



Example. What is the cost of an annuity that pays $1000 every
four weeks for 52 weeks starting in a year’s time if it is bought at
an annual discount rate of 0.96? The cost uses the preceding
formulae evaluated with 4 week periods. The discount rate each
four weeks is d = 0.961/13 = 0.996865. Then

PV = 960
0.04

.003135
. = 960(12.75917) = 12248.80.

That is, an insurance company offering this annuity should quote a
price of $12,248.80 to the buyer. They will then pay out a total of
$13,000 to the recipient of the annuity

Often this is the way “trust fund babies” are paid or patients
in a nursing home. The trust fund buys such an annuity, then the
insurance company makes this arranged payout to the designated
beneficiary.



Continuous Interest rates

We have seen that a nominal interest rate of r per year
charged daily leads to a daily interest rate of (r/365) so the APR
is given by

1 + ra =
(

1 +
r

365

)365
since the daily growth factor is fd = (1 + r

365).

Example A nominal interest rate of r = 0.1825 compounded
daily has an APR of ra = .20016 or 20.016%.



One of the definitions of the exponential function is that

ex := lim
m→∞

(1 + x/m)m

Thus a nominal annual interest rate of r compounded continuously
(that is every second of every day) will yield an annual percentage
rate of ra := er or a growth factor of r(T ) = erT over T years.

Example. The nominal interest rate of 18.25% per year
compounded continuously has an APR of ra = .20021 which is
only very slightly higher than daily compounding.



We say that an account earns an annual continuous
interest rate rc provided its growth factor after time T is

f (T ) := ercT or A(T ) = A(0) ercT

Thus an account that earns interest with an APR of ra per
year has continuous interest rate rc := ln (1 + ra) as the
annual growth rates are f = 1 + ra = erc

This says that an annual rate of ra paid once a year is
equivalent to an interest rate of rc every second during the year (to
many decimal places) as they have the same 1-year growth factors.

Example. What is the continuous interest rate corresponding to
an APR of 0.1 = 10%?

Ans: rc = ln 1.1 = 0.095310



When interest is compounded more often than weekly, most
people use continuous compounding since it simplifies many of the
mathematical formulae.

The continuous rate always obeys rc < ra as ln (1 + x) < x
for x > 0. From the Taylor series for the exponential function one
sees that

ra = rc +
1

2
rc

2 +
1

6
rc

3 + ...

so rc will be close to (and below) the solution of

x2 + 2 x − 2 ra = 0.

This is the equation you get from just using 2 terms in the Taylor
series. A better approximation is the solution that uses 3 terms
and is a cubic equation for an approximation of rc .



Just as there is an APR associated with any discrete interest
rate so also there is a continuous interest rate associated with any
discrete interest rate. Suppose r2 is an interest rate per 1/2 year,
r4 is an interest rate per quarter, r12 is an interest rate per ordinary
month and r52 is a weekly interest rate. Then the continuous
interest rate rc associated with these rates satisfies

erc = (1 + r2)2 = (1 + r4)4 = (1 + r12)12 = (1 + r52)52

Each of these is the 1-year growth factor at the indicated rate.

Exercise What is the similar formulae for the 4-week interest
rate r13 and the daily interest rate r365? Complete the following
formulae for r13, r52, r365.

rc = 2 ln (1 + r2) = 4 ln (1 + r4) = 12 ln (1 + r12) = ...



When a continuous interest rate r is known, then the growth
factor of an investment of $A for time T is

f (T ) := erT so A(T ) = A erT

The present value of a payment of $A to be made at time T in the
future is

PV = d(T ) A with d(T ) = e−rT =
1

f (T )



US Treasury Bills or T-bills

See Wikipedia entry for United States Treasury security.

These are issued by the US government who promise to pay
you $1,000 per bill in 4, 8, 13, 26 or 52 weeks time from the date
of purchase. An M week bond has a term or time to maturity of
M weeks.

Buyers pays $10 P per bill with P < 100 being determined
by an auction. Since these are government bonds they are
considered to be “riskless” and have the lowest interest rates of
any bonds available in the US for this time period. So T-bill rates
are used for comparison purposes to all other interest rates.



Suppose that an M week T -bills is sold for a price of $10P,
then we say that the M-week treasury (continuous) interest rate is
rk per year where

P = 100e−(k rk ) and k = 52/M.

Thus the 52-week T-bill rate is the annual continuous
interest rate associated with this purchase. The 26-week T-bill rate
is the semi-annual continuous interest rate per year The 13-week
T-bill rate is the quarterly continuous interest rate and the 4-week
T-bill rate is the (lunar) monthly interest rate per year.

A plot of interest rate against time to maturity, or term, is
called a yield curve.



Example 1. If a 12-month T-bill costs $980, then we say its price
is P = $98.00. The 52-week T-bill continuous rate is ra where

era = 100/98 = 1.0204082. Thus

ra = ln 1.0204082 = 0.02020271

This is a continuous rate of 2.02% per year.

Example 2. A 6-month T-bill costs $991.00 so its price is said to
be P= $99.10. The 26-week T-bill continuous rate is r2 where

er2 = 100/99.1 = 1.0090817 Thus

r2 = 2 ln 1.0090817 = 0.0180815

This is a continuous rate of 1.808% per year.



Zero Coupon Bonds

T- bills are special examples of what are called zero coupon
bonds (ZCB). These are bonds that do not make any interest
payments but which will pay a given amount $A at time T from
now. A is called the face value of this bond and T is the term or
the time to maturity. The present value of a bond with face value
$A, at the continuous interest rate r is

PV = A e−rT

We say the price of such a bond is P = 100 e−rT < 100 and
assume that r > 0, T > 0. So the price is the cost of such a bond
with face value $100 at maturity.



Example. What is the price of a ZCB that pays a continuous
interest rate of 3% and has 3 years to maturity?
Answer. P = 100 e−0.09 = $91.3931. Thus each $1,000 bond
will cost $913.93.

Problem A 4-year ZCB is bought for $900. What is the
continuous interest rate for this bond?

This time want to find r, when 900 = 1000 e−4r . .
Thus e4r = 1.111111111 so 4r = .1053605 and
r = 0.02634 or the interest rate is 2.634%.

In this problem, the solution for r is often called the internal
rate of return (IRR) or the yield on this bond. This IRR is then
denoted by y (for yield).



Usually one has that the interest rate on shorter term bond
from a company or government to be less than that of a longer
term bond so one expects the yield curve to be an increasing
function of the time-to maturity (or term). If there is a range of
“terms” where the yield decreases as the term increases then one
has an “ inverted” yield curve and a trader could make a profit
using riskless “arbitrage” . This could happens when there is likely
to be a big change between the maturity dates such as a
declaration of war or a difficult election.

Banks usually pay interest rates on savings and CDs that are
below the annual interest rates on T-bills - as they often purchase
T-bills with the funds. On Wikipedia, and in older texts they
describe the “discount yield” of a T-bill. This is a number that is
very, very close to this continuous yield per year.


