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Abstract. Criteria for the existence and uniqueness of weak solutions of div-curl bound-
ary-value problems on bounded regions in space with C2-boundaries are developed. The
boundary conditions are either given normal component of the field or else given tan-
gential components of the field.

Under natural integrability assumptions on the data, finite-energy (L2) solutions exist
if and only if certain compatibility conditions hold on the data. When compatibility
holds, the dimension of the solution space of the boundary-value problem depends on the
differential topology of the region. The problem is well-posed with a unique solution in
L2(Ω; R3) provided, in addition, certain line or surface integrals of the field are prescribed.
Such extra integrals are described.

These results depend on certain weighted orthogonal decompositions of L2 vector fields
which generalize the Hodge-Weyl decomposition. They involve special scalar and vector
potentials. The choices described here enable a decoupling of the equations and a weak
interpretation of the boundary conditions. The existence of solutions for the equations for
the potentials is obtained from variational principles. In each case, necessary conditions
for solvability are described and then these conditions are shown to also be sufficient.
Finally L2-estimates of the solutions in terms of the data are obtained.

The equations and boundary conditions treated here arise in the analysis of Maxwell’s
equations and in fluid mechanical problems.

1. Introduction

This paper treats existence and well-posedness issues for boundary value problems
for div-curl systems of the form (2.1)–(2.2) on bounded 3-d regions. In particular we treat
situations where

(i) the normal component of the field is prescribed on the boundary, or
(ii) the tangential components of the field is prescribed on the boundary.

Each of these cases each arise in electromagnetic modelling and we show that

(i) the data must satisfy certain compatibility conditions for solutions to exist,
(ii) depending on the topology of the region and the boundary data, the solutions may

be non-unique, and
(iii) the solutions are described by variational principles for specific scalar and vector

potentials.

Date: September 19, 2004.
1



2 AUCHMUTY AND ALEXANDER

The specific well-posedness results are Theorems 12.6 and 13.4 of this paper. These
theorems are based on the representation theorem 5.2, and much of this paper is devoted
to establishing this weighted Hodge-Weyl decomposition. A major issue is the description
of appropriate classes of potentials for each of these problems. When the potentials are
selected appropriately, the system may be decomposed into independent problems for the
scalar potential and the vector potential of the solution.

Variational principles for these potentials are described and the existence and unique-
ness of solutions is analyzed. For each of these problems, we first describe the necessary
conditions on the data for the existence of solutions. Then we show that, subject to some
further natural integrability requirements on the data, these necessary conditions are, in
fact, sufficient to guarantee the existence of finite-energy solutions. When the topology of
the domain or the boundary data is non-trivial, there may be non-uniqueness of solutions
of the pure boundary value problem. This non-uniqueness is manifested in the existence
of a finite dimensional subspace of ε-harmonic vector fields. Extra linear functionals must
then be specified to determine a unique solution. Such extra conditions are detailed.

For the prescribed flux problem these extra conditions may often be interpreted as
requiring the prescription of extra circulations. When the tangential component of the
field is prescribed, the extra conditions may be regarded as potential differences. The
number and type of such extra conditions are independent of the tensor ε(x) in the
equations, provided condition E1 holds. In the case of prescribed flux, the number of
extra conditions is the number of handles in the domain - or the dimension of the first
de Rham cohomology group. When the tangential field is prescribed on the boundary,
the number of potential differences required is the number of holes in the domain - or the
dimension of the second de Rham cohomology group of the region.

Earlier work on the normal and tangential boundary-value problems for these sys-
tems includes that by Picard [16] and Saranen [17] and [18]. Their results used the theory
of closed linear operators on Hilbert spaces. Recently Bolik and von Wahl [8] have de-
scribed a Cα approach to these questions. Cessenat, in chapter 9 of [9], has provided a
careful analysis of these problems. The variational approach detailed here is quite differ-
ent to any of the preceding works and provides, we believe, both a physically reasonable,
and an numerically advantageous formulation of these problems. In particular, it permits
the treatment of boundary conditions in certain natural weak forms. Previously, Kotiuga
and Silvester in [15] described a variational principle related to those described here for
a modelling a magnetostatic problem.

The results of this paper could have been formulated in the language of exterior
analysis and differential forms. This was not done here for a variety of reasons including
the fact that using the same exterior derivative symbol for each of grad, curl and div ends
up being quite confusing. Moreover the analysis given here applies to contravariant fields
such as the velocity field in inviscid fluid mechanics as well as to covariant fields. It is,
however, very useful to interpret many of the results for the special case of forms on open
sets in R3.
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This paper has many similarities with our paper on the planar div-curl problem [6],
although there are many changes in the notation, results and methodology because of the
extra dimension. In both papers, however, the results are obtained by using potential
decompositions of finite-energy fields and variational principles for the potentials. Also
Auchmuty [4] described related principles for finding the velocity from the vorticity in
3-dimensional fluid flows.

2. div-curl Equations on Bounded Regions.

This section describes the boundary-value problems for div-curl systems that are be
studied. Throughout this paper, Ω is a non-empty, bounded, connected open subset of
R3. Its closure is denoted by Ω and its boundary is ∂Ω := Ω\Ω. A non-empty, connected,
open subset of R3 is called a region. We generally require:

Condition B1. Ω is a bounded region in R3 and ∂Ω is the union of a finite number of
disjoint closed C2 surfaces; each surface having finite surface area.

A closed surface Σ in space is said to be C2 if it has a unique unit outward normal
ν at each point and ν is continuously differential vector field on Σ. See [14], Section 1.1.
for more details on this definition. When (B1) holds and ∂Ω consists of J + 1 disjoint,
closed surfaces, then J is the second Betti number of Ω, or the dimension of the second
de Rham cohomology group of Ω. Geometrically it counts the number of “holes” in the
region Ω.

When u, v are vectors in R3, their scalar product, Euclidean norm and vector product
are denoted u · v, |u|, and u ∧ v, respectively. The issue to be studied here is:

Given a Lebesgue-integrable real-valued function ρ, a vector field ω defined on
Ω and specific boundary conditions, when does the system

div
(
ε(x)v(x)

)
= ρ(x) and(2.1)

curl v(x) = ω(x), for x ∈ Ω,(2.2)

have a unique weak solution v ∈ L2(Ω; R3)?

Here div and curl are the usual vector differential operators and ε(x) :=
(
ejk(x)

)
is a

symmetric, positive definite, 3× 3 matrix for each x ∈ Ω. The matrix ε(x) is required to
satisfy the following condition:

Condition E1. Each component ejk of ε is continuous on Ω and there exist positive
constants e0 and e1 such that, for all x ∈ Ω and u ∈ R3,

(2.3) e0 |u|2 ≤ (ε(x)u) · u ≤ e1 |u|2 .

The system (2.1)–(2.2) arises in fluid mechanics and electromagnetic field theory, as
well as other applications. For a fluid , ε(x) is a diagonal matrix whose diagonal entries
are the local mass density. In electrostatics, ε(x) is the permittivity matrix. In linear
magnetic field theory, ρ(x) is zero, v represents the magnetic field intensity and then
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ε(x) is the inverse of the magnetic permeability tensor. Much of the following analysis
is motivated by questions about the solvability of Maxwell’s equations. The conditions
imposed, and the results obtained, have physical interpretations in electromagnetic field
theory.

The normal (or prescribed flux) boundary-value problem for (2.1)–(2.2) is given a
function µ on ∂Ω, to find solutions v subject to

(2.4)
(
ε(x)v(x)

)
· ν(x) = µ(x) on ∂Ω.

The tangential boundary-value problem is given a tangential vector field η on ∂Ω to solve
(2.1)–(2.2) subject to

(2.5) v(x) ∧ ν(x) = η(x) on ∂Ω.

The field η is tangential on ∂Ω provided

(2.6) η(x) · ν(x) ≡ 0 on ∂Ω.

This paper develops sharp conditions under which the div-curl system (2.1)–(2.2)
has finite-energy (L2) weak solutions which satisfy the boundary conditions in a specific
weak sense. An important part of this paper is to establish this weak formulation for
this problem. The guiding principle in this work is the use variational principles to
determine both the formulation, and the solutions, of these boundary value problems. To
do this special potential representations of the solutions are introduced. These separate
into distinct problems for the scalar and vector potentials of the solution. The next two
sections describe the various Hilbert spaces used in these decompositions which allows us
to state the weighted Hodge-Weyl representation in Theorem 5.2.

3. Spaces of Functions and Vector Fields

To state our results various spaces of functions and vector fields are defined. A listing
of spaces and projections is provided for the convenience of readers in an appendix near
the end of this paper. The space Lp(Ω) with 1 ≤ p <∞, is the usual space of (equivalence
classes of) Lebesgue measurable functions ϕ : Ω → R for which |ϕ|p is Lebesgue integrable
on Ω. They are Banach spaces under the norm

‖ϕ‖p
p :=

∫
Ω

|ϕ(x)|p d3x.

When p = 2, these are real Hilbert spaces, the inner product is denoted 〈u, v〉 and the
subscript on the norm is omitted. All integrals are Lebesgue integrals and d3x denotes
integration with respect to 3-dimensional Lebesgue measure. When the domain of inte-
gration is omitted it is assumed to be Ω. The function ϕ is in Lp

loc(Ω) if ϕ ∈ Lp(K) for
every compact subset K of Ω.

Let W 1,p(Ω) be the usual real Sobolev space of functions. Derivatives are usually
taken in the weak sense and the jth weak derivative of ϕ(x) is written ϕ,j(x) := ∂ϕ(x)/∂xj.
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When ϕ ∈ W 1,p(Ω) for some p ≥ 1 and Ω obeys (B1), then the trace of ϕ on ∂Ω is well-
defined and is a Lebesgue integrable function, see [11, Section 4.2] for details. Surface
integrals are denoted by dσ and are defined using 2-dimensional Hausdorff measure.

If ϕ, ψ ∈ W 1,p(Ω) for some p ≥ 3/2, then the Gauss-Green Theorem holds in the
form

(3.1)

∫
Ω

ϕ ψ,i d
3x =

∫
∂Ω

ϕ ψ νi dσ −
∫

Ω

ψ ϕ,i d
3x

for i ∈ {1, 2, 3}.
When v : Ω → R3 is a Lebesgue measurable vector field, its Cartesian components

are denoted vi, so that v(x) = (v1(x), v2(x), v3(x)). When v is weakly differentiable, its
derivative matrix is Dv(x) := (vj,k(x)). v is said to be in L2(Ω; R3), or H1(Ω; R3), when
each component vj is in L2(Ω), or H1(Ω), respectively. These are Hilbert spaces with
respect to the inner products

〈u, v〉 :=

∫
Ω

u(x) · v(x) d3x, and(3.2)

〈u, v〉1 :=

∫
Ω

[ u(x) · v(x) +
3∑

j,k=1

uj,k(x) vj,k(x) ] d3x.(3.3)

The corresponding norms are denoted ‖u‖ , ‖u‖1 respectively. When no subscript is indi-
cated, the corresponding norm is an L2-norm. The field is in Lp(Ω; R3) for 1 ≤ p ≤ ∞
provided

‖v‖p
p :=

∫
Ω

|v(x)|p d3x < ∞.

The class of all such fields is a real Banach space with this norm.

When ϕ : Ω → R is in W 1,p(Ω) then its gradient is the vector field ∇ϕ : Ω → R3

defined by

(3.4) ∇ϕ(x) :=
(
ϕ,1(x), ϕ,2(x), ϕ,3(x)

)
and this field is in Lp(Ω; R3). When v : Ω → R3 is a C1 vector field, its (classical)
divergence is the function defined by

(3.5) div v(x) := v1,1(x) + v2,2(x) + v3,3(x)

The curl of v is the vector field defined by

(3.6) curl v(x) :=
(
v3,2 − v2,3, v1,3 − v3,1, v2,1 − v1,2

)
.

where vi,j is the classical jth derivative of vi.

Let C∞
c (Ω) be the space of all C∞ functions on Ω with compact support. When

v ∈ Lp(Ω; R3) for some p ≥ 1, then a function ρ ∈ L1
loc(Ω) is the (weak) divergence of v

on Ω provided

(3.7)

∫
Ω

[ϕ ρ+∇ϕ · v] d3x = 0 for all ϕ ∈ C∞
c (Ω).
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The field is solenoidal on Ω if this holds with ρ ≡ 0 on Ω. Similarly when v ∈ Lp(Ω; R3)
for some p ≥ 1, then a field ω ∈ L1

loc(Ω; R3) is the (weak) curl of v on Ω provided

(3.8)

∫
Ω

[v · curl z − ω · z] d3x = 0 for all z ∈ C∞
c (Ω; R3).

v is irrotational on Ω provided this holds with ω ≡ 0.

The field v is said to be in H(div,Ω) provided v ∈ L2(Ω; R3) and div v ∈ L2(Ω).
The space of all such fields is a real Hilbert space with respect to the inner product

(3.9) 〈u, v〉d :=

∫
Ω

[u · v + div u. div v] d3x.

Similarly H(curl,Ω) is the space of all fields v ∈ L2(Ω; R3) such that curl v is also in
L2(Ω; R3). It is a real Hilbert space with respect to the inner product

(3.10) 〈u, v〉c :=

∫
Ω

[u · v + curlu · curl v] d3x.

Let

(3.11) HDC(Ω) = {v ∈ L2(Ω; R3) : div v ∈ L2(Ω) and curl v ∈ L2(Ω; R3)}.

This is a Hilbert space under the inner product

(3.12) 〈u, v〉DC :=

∫
Ω

[u · v + curlu · curl v + div u. div v] d3x,

which is called the DC-inner product. Further discussion of these spaces may be found in
Girault and Raviart [14, Chapter 1] or Cessenat [9, Chapter IX, part A].

A number of results about the boundary behavior of vector fields are required. Let
C(Ω : R3) be the space of all continuous vector fields on Ω. Given v ∈ C(Ω : R3), the
normal component of v on the boundary is the vector field

vν(x) := (v(x) · ν(x)) ν(x).

The tangential component of the field is

vτ (x) := v(x) − vν(x) = ν(x) ∧ (v(x) ∧ ν(x)).

The vector vτ (x) is non-zero if and only if (v(x) ∧ ν(x)) 6= 0.

Define the normal trace operator Tν : C(Ω : R3) ∩HDC(Ω) → C(∂Ω) by

(3.13) Tνv(x) := v(x) · ν(x) for x ∈ ∂Ω.

This operator may be extended to a continuous linear map ofH(div,Ω) toH−1/2(∂Ω). See
[9, Chapter IX, Section 1.2, Theorem 1] for the precise statement and a proof. Similarly
the tangential trace operator Tτ : C(Ω : R3) ∩HDC(Ω) → C(∂Ω : R3) is defined by

(3.14) Tτv(x) := v(x) ∧ ν(x) for x ∈ ∂Ω.

This operator may be extended to a continuous linear map ofH(curl,Ω) toH−1/2(∂Ω; R3).
See [9, Chapter IX, Section 1.2, Theorem 2] for more details.
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Linearity and the Gauss-Green theorem (3.1) yield the following identities when
each of the integrals are finite:∫

Ω

u · ∇ϕ d3x =

∫
∂Ω

ϕ (u · ν) dσ −
∫

Ω

ϕ div u d3x,(3.15) ∫
Ω

u · curl v d3x =

∫
∂Ω

v · (u ∧ ν) dσ +

∫
Ω

v · curlu d3x.(3.16)

Sometimes in treating line and surface integrals on smooth subsets of Ω we use the notation
of differential forms and omit the symbol for the measure.

When u ∈ H(div,Ω), ϕ ∈ H1(Ω), (3.15) still holds with the surface integral replaced
by the pairing ofH1/2(∂Ω) andH−1/2(∂Ω). Similarly when u ∈ H(curl,Ω), v ∈ H1(Ω; R3),
(3.16) remains valid with the surface integral replaced by the pairing of H1/2(∂Ω; R3) and
H−1/2(∂Ω; R3).

These formulae permit us to define the normal and tangential traces of general fields
on Ω. When u ∈ L1(Ω; R3), div u ∈ L1(Ω) and g ∈ L1(∂Ω) we say that u · ν := g on ∂Ω
provided

(3.17)

∫
Ω

[ϕ div u+∇ϕ · u] d3x =

∫
∂Ω

g ϕ dσ.

for all ϕ ∈ C(Ω) ∩W 1,∞(Ω). This definition ensures that (3.15) holds for the fields used
here.

When u ∈ L1(Ω; R3), curlu ∈ L1(Ω; R3) and τ is a L1-vector field on (∂Ω, dσ), we
say that u ∧ ν = τ on ∂Ω provided τ · ν = 0, σ a.e. on ∂Ω and

(3.18)

∫
Ω

[u · curl v − v · curlu] d3x =

∫
∂Ω

v · τ dσ

for all v ∈ W 1,∞(Ω; R3) ∩ C(Ω : R3).

The spacesH1
ν0(Ω; R3) andH1

τ0(Ω; R3) are the closed subspaces of fields u ∈ H1(Ω; R3)
which satisfy, in the trace sense,

(3.19) u · ν = 0 or u ∧ ν = 0 on ∂Ω, respectively.

Friedrichs showed in [13] that these spaces can be identified with the subspaces of HDC(Ω)
that obey the same boundary conditions; see also [5] for a recent discussion of these issues.

4. Weighted Orthogonal Decompositions

To describe the solvability of boundary value problems for div-curl systems of the
form (2.1)–(2.2), we use some special representations of the solution. We seek solutions
of the form

(4.1) u(x) = ∇ϕ(x) + ε(x)−1 curlA(x) + h(x).

Here ϕ is called a scalar potential for the field v, A is called the vector potential for v and
h is an ε-harmonic vector field on Ω. There are many possible such decompositions; here
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we apply two such decompositions defined by orthogonal projections on L2(Ω; R3) with
respect to the weighted inner product

(4.2) 〈u, v〉ε :=

∫
Ω

(
ε(x)u(x)

)
· v(x) d3x.

The particular choices to be used here result in the decoupling of the equations for ϕ,A
and h and permit a weak interpretation of the boundary conditions.

When ε satisfies (E1), the inner product (4.2) and concomitant norm are equivalent
to the usual ones on L2(Ω; R3). Two subspaces V , W of L2(Ω; R3) are said to be ε-
orthogonal when they are orthogonal with respect to the inner product (4.2). A field
v ∈ L2(Ω; R3) is said to be ε-solenoidal on Ω provided

(4.3)

∫
Ω

[ (εv) · ∇ϕ ] d3x = 0 for all ϕ ∈ C∞
c (Ω).

This is the weak version of the equation

(4.4) div
(
ε(x)v(x)

)
= 0 on Ω.

Define

G(Ω) := {∇ϕ : ϕ ∈ H1(Ω)}, and G0(Ω) := {∇ϕ : ϕ ∈ H1
0 (Ω)}.

These are subspaces of L2(Ω; R3) and their ε-orthogonal complements may be character-
ized as follows.

Proposition 4.1. Assume (B1) and (E1) hold and v ∈ L2(Ω; R3). Then v is

(i) ε-orthogonal to G0(Ω) if and only if v is ε-solenoidal,
(ii) ε-orthogonal to G(Ω) if and only if v is ε-solenoidal and satisfies (in the sense of

(3.17))

(4.5) εv · ν = 0 on ∂Ω.

Proof. v ∈ L2(Ω; R3) is ε-orthogonal to G0(Ω) if and only if (4.3) holds for all ϕ ∈ H1
0 (Ω).

Thus (i) holds as C∞
c (Ω) is dense in H1

0 (Ω). When v is ε-orthogonal to G(Ω), then (i)
holds so εv is in H(div,Ω) and v is ε-solenoidal. This implies that εv · ν is in H−1/2(∂Ω).
Substitute εv for u in (3.17), then v is ε-orthogonal to G(Ω) if and only if (4.5) holds. �

Define the spaces Vε(Ω) and Vεν0(Ω) to be the ε-orthogonal complements of G0(Ω)
and G(Ω) respectively in L2(Ω; R3). Then

(4.6) L2(Ω; R3) = G0(Ω)⊕ε Vε(Ω) = G(Ω)⊕ε Vεν0(Ω).

Here ⊕ε represents the orthogonal direct sum with the inner product (4.2). Part (i) of
Proposition 4.1 may be interpreted as saying that an L2 field satisfies (4.3) if and only if
it is in Vε(Ω). Similarly v ∈ L2(Ω; R3) is a weak solution of (4.4) and (4.5) if and only if
it is in Vεν0(Ω).
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Define

Curlε(Ω) := {ε−1 curlA : A ∈ H1(Ω; R3)},(4.7)

Curlεν0(Ω) := {ε−1 curlA : A ∈ H1
ν0(Ω; R3)}, and(4.8)

Curlετ0(Ω) := {ε−1 curlA : A ∈ H1
τ0(Ω; R3)}.(4.9)

When ε(x) ≡ I3 on Ω, the subscript ε is omitted in these definitions. When ε satisfies (E1),
these are subspaces of L2(Ω; R3) and their ε-orthogonal complements may be characterized
as follows.

Proposition 4.2. Assume (B1) and (E1) hold, then Curlε(Ω) = Curlεν0(Ω). If v ∈
L2(Ω; R3) then v is

(i) ε-orthogonal to Curlετ0(Ω) if and only if v is irrotational on Ω,
(ii) ε-orthogonal to Curlε(Ω) if and only if v is irrotational and satisfies, in the sense

of (3.18),

(4.10) v ∧ ν = 0 on ∂Ω.

Proof. Suppose B = ε−1 curlA ∈ Curlε(Ω). Then A ∈ H1(Ω; R3) and there is a weak
solution ϕ ∈ H1(Ω) of the Neumann problem

(4.11) ∆ϕ = divA on Ω and
∂ϕ

∂ν
= A · ν on ∂Ω.

See Theorem 6.1 below for a proof of a more general result. Define C := A−∇ϕ. Then
C is solenoidal, with curlC = curlA and C · ν = 0 on ∂Ω. Thus C ∈ HDCν0(Ω), so it
is in H1

ν0(Ω; R3) from [9, Chapter IX, Section 1.2, Theorem 3]. Also B = ε−1 curlC so
B ∈ Curlεν0(Ω) and the first claim holds.

(i) From (4.2), v ∈ L2(Ω; R3) is ε-orthogonal to Curlετ0(Ω) if and only if

(4.12)

∫
Ω

[v · curlA] d3x = 0 for all A ∈ H1
τ0(Ω; R3).

Since C∞
c (Ω; R3) is a subspace of H1

τ0(Ω; R3), this implies that v is irrotational on Ω so
it is in H(curl,Ω). Conversely if v is irrotational on Ω, use (3.18) with u ∈ H1

τ0(Ω; R3) to
see that it is ε-orthogonal to Curlετ0(Ω).

(ii) If v is ε-orthogonal to Curlε(Ω), it is irrotational on Ω from part (i). Substitute in
(3.18); then (4.10) holds. Conversely, when v ∈ H1(Ω; R3) and is irrotational, (4.10) and
(3.18) implies that v is ε-orthogonal to Curlε(Ω). By density, this extends to L2(Ω; R3).

�

It is worth noting that parts (ii) of the above results imply that L2-fields on Ω which
obey an L2-orthogonality condition not only are weak solutions of an equation on Ω, but
also satisfy specific weak boundary conditions on ∂Ω.
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5. Harmonic and ε-harmonic Vector Fields

The last result shows that the irrotational vector fields on Ω may be characterized
as the ε-orthogonal complements of specific subspaces. It is natural to ask if G(Ω) and
G0(Ω) are these spaces? As seen later, the answer depends on the topology of Ω.

The field v ∈ L2(Ω; R3) is ε-harmonic, (respectively harmonic) on Ω if it is ε-
solenoidal, (respectively solenoidal) and irrotational on Ω. Define Hεν0(Ω) and Hετ0(Ω)
to be the spaces of all L2 vector fields on Ω which are ε-orthogonal to G(Ω)⊕ε Curlετ0(Ω),
and G0(Ω) ⊕ε Curlεν0(Ω), respectively. That is h ∈ Hεν0(Ω) provided it is in L2(Ω; R3)
and

(5.1)

∫
Ω

(εh) · ∇ϕ d3x = 0 and

∫
Ω

h · curlA d3x = 0

for all ϕ ∈ G(Ω), A ∈ Curlετ0(Ω). Similarly h is in Hετ0(Ω) provided (5.1) holds for all
ϕ ∈ G0(Ω), A ∈ Curlεν0(Ω). These are weak forms of the system

(5.2) div εh = 0 and curlh = 0 on Ω

subject to further boundary conditions associated with these orthogonality conditions.
This may be summarized as follows.

Proposition 5.1. Assume (B1) and (E1) hold, then a vector field h ∈ L2(Ω; R3) is in

(i) Hεν0(Ω) if and only if h is ε-harmonic on Ω and satisfies (4.5),
(ii) Hετ0(Ω) if and only if h is ε-harmonic on Ω and satisfies (4.10).

When ε = I3 and h is in either Hν0(Ω) or Hτ0(Ω), then h ∈ H1(Ω; R3).

Proof. The first two parts follows from the last two propositions of Section 4. When
ε = I3, the fact that any such field is actually H1 is a consequence of [9, Chapter 9,
Section 1.2, Theorem 3]. �

This result may be refined to the following weighted Hodge-Weyl theorem which
justifies the representation (4.1).

Theorem 5.2. Assume that (B1) and (E1) hold, then

L2(Ω; R3) = G(Ω)⊕ε Curlετ0(Ω)⊕ε Hεν0(Ω),(5.3)

L2(Ω; R3) = G0(Ω)⊕ε Curlε(Ω)⊕ε Hετ0(Ω),(5.4)

and the spaces Hεν0(Ω) and Hετ0(Ω) are finite dimensional.

Proof. Here the direct sums are with respect to the weighted inner product (4.2). These
decompositions follow from Proposition 5.1, provided that each of the relevant spaces is
closed. These closure properties are proved in Corollaries 6.2, 6.4, 8.2 and 8.4 in the next
three sections. The explicit characterization and dimension properties of the subspaces
of ε-harmonic fields are described in Sections 10 and 11. �



L2-WELL-POSEDNESS OF div-curl SYSTEMS 11

When ε(x) ≡ I3 , the representation (4.1) in this theorem has been called a Hodge-
Weyl decomposition. Hodge originally studied such formulae on quite general manifolds,
see Abraham, Marsden & Ratiu [1, Section 7.5] for such a result. Weyl, in [19], used
singular integral operator methods to prove similar results when Ω is a region in R3 and
these results were proved using functional-analytic methods by Cessenat in [9, Chapter IX,
Section 1.3]. In the next few sections, the methodology of Auchmuty [3] is generalized to
prove this weighted version of the decomposition theorem.

6. Characterization of the Scalar Potential

In this section, the scalar potentials in Theorem 5.2 are described explicitly. If H
is a Hilbert space, the projection of H onto a closed subspace V can be characterized
variationally by Riesz’ Theorem. When u ∈ H, its projection û := PV u onto V is the
minimizer of ‖u− v‖ over V . Let H = L2(Ω; R3) with the weighted inner product (4.2),
let V be the closure of G(Ω) and u ∈ L2(Ω; R3). Then the scalar potential ϕ in the
representation (5.3) minimizes the functional Du : H1(Ω) → R defined by

(6.1) Du(ϕ) :=

∫
Ω

[(ε(∇ϕ) · ∇ϕ)− 2(εu) · ∇ϕ] d3x.

Let H1
m(Ω) be the subspace of H1(Ω) of functions with zero mean value. It is a closed

subspace and

(6.2) Du(Pmϕ) = Du(ϕ) for all ϕ ∈ H1(Ω),

where Pmϕ := ϕ−ϕ is the projection of H1(Ω) onto H1
m(Ω) and ϕ is the mean value of

ϕ on Ω. The basic results about the minimization of Du may be summarized as follows.

Theorem 6.1. Assume Ω satisfies (B1) and ε satisfies (E1). For each u ∈ L2(Ω; R3),
there is a unique function ϕu ∈ H1

m(Ω) which minimizes Du on H1
m(Ω). Moreover ϕu is

the unique solution in H1
m(Ω) of

(6.3)

∫
Ω

ε(∇ϕ− u) · ∇ψ d3x = 0 for all ψ ∈ H1
m(Ω).

A function ϕ ∈ H1(Ω) minimizes Du on H1(Ω) if and only if ϕ is a solution of (6.3).

Proof. The functional Du defined by (6.1) is continuous and convex by standard argu-
ments. Hence it is weakly lower semi-continuous on H1(Ω) and on H1

m(Ω). Then (2.3)
and Poincaré’s inequality (see [2]) imply there is a c1(Ω) > 0 such that

(6.4)

∫
Ω

(ε(∇ϕ) · ∇ϕ) d3x ≥ e0

∫
Ω

|∇ϕ(x)|2 d3x ≥ e0c1(Ω)

∫
Ω

|ϕ(x)|2 d3x

for all ϕ ∈ H1
m(Ω). Thus

Du(ϕ) ≥ 1

2

∫
Ω

e0
[
|∇ϕ|2 + c1(Ω)ϕ2

]
d3x− e1 ‖u‖ ‖∇ϕ‖ .

Since c1(Ω) is positive, this is coercive and strictly convex on H1
m(Ω), so there is a unique

minimizer ϕu of Du on H1
m(Ω). See [20, Chapter 42] or [7, Chapter 6] for these existence
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theorems. The functional Du is Gateaux differentiable on H1(Ω) and its derivative D′
u(ϕ)

satisfies

(6.5) 〈D′
u(ϕ), ψ〉 = 2

∫
Ω

ε(∇ϕ− u) · ∇ψ d3x

for all ψ ∈ H1(Ω). If ϕ minimizes Du on H1(Ω), then 〈D′
u(ϕ), ψ〉 = 0 for all ψ ∈ H1(Ω)

and thus (6.3) holds. Thus ϕu = Pmϕ satisfies (6.3) as it only differs from ϕ by a
constant. �

When ε satisfies (E1), and εu is a sufficiently nice field on Ω, then (6.3) is the weak
form of the elliptic boundary value problem

div(ε∇ϕ) = div(εu) on Ω, and(6.6)

(ε∇ϕ) · ν = εu · ν on ∂Ω.(6.7)

In this case, the scalar potentials ϕu in (5.3) may be taken to be any H1-weak solution
of this boundary-value problem.

Corollary 6.2. With Ω, ε as above, the space G(Ω) is a closed subspace of L2(Ω; R3). If
u ∈ L2(Ω; R3), the ε-orthogonal projection of u onto G(Ω) is ∇ϕ where ϕ is any solution
of (6.3).

Proof. Take H = L2(Ω; R3), V = G(Ω) in [3, Corollary 3.3]. Since there is a minimizer of
Du on H1(Ω) for each u ∈ H, the space G(Ω) is a closed subspace of H and the projection
of u into G(Ω) is ∇ϕ where ϕ is any solution of (6.3). �

The projection of L2(Ω; R3) onto G0(Ω) may be analyzed in a similar manner. The
functionals are the same but the space of allowable potentials is H1

0 (Ω). This leads to the
following.

Theorem 6.3. Let Ω be a bounded, open set in R3 and suppose ε satisfies (E1). For each
u ∈ L2(Ω; R3), there is a unique function ϕ0 that minimizes Du on H1

0 (Ω). Moreover ϕ0

is the unique solution in H1
0 (Ω) of

(6.8)

∫
Ω

ε(∇ϕ− u) · ∇ψ dx = 0, for all ψ ∈ H1
0 (Ω).

Proof. The crucial step here is the verification of the Poincaré inequality on H1
0 (Ω). This

is a standard result (see [2]). The rest of the proof parallels that of Theorem 6.1. �

Corollary 6.4. When ε satisfies (E1) and Ω is a bounded open set in R3, G0(Ω) is a
closed subspace of L2(Ω; R3). If u ∈ L2(Ω; R3), the ε-orthogonal projection of u onto
G0(Ω) is ∇ϕ0 where ϕ0 is the unique solution of (6.8).

Proof. Take V = G0(Ω) and repeat the arguments in the proof of Corollary 6.2. �

Essentially, this projection is ∇ϕ0 where ϕ0 is a weak solution in H1
0 (Ω) of equation

(6.6).
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7. Vector Potential of Sobolev Fields

In this section some further properties of certain potential representations of fields
in (subspaces of) H1(Ω; R3) are described. In particular we use the results to specify some
uniqueness results for the vector potential of such fields.

Let H1
ν0(Ω; R3), H1

τ0(Ω; R3) be the spaces defined at the end of Section 3, and V 1
ν0(Ω),

V 1
τ0(Ω) be their subspaces of solenoidal fields. Throughout this section we use results from

the previous section with ε(x) ≡ I3 on Ω. The following result may be compared with
Proposition 4.1.

Proposition 7.1. Assume Ω satisfies (B1). Given u ∈ H1
τ0(Ω; R3), there is a unique

v ∈ V 1
τ0(Ω) and ϕ0 ∈ H2(Ω) ∩H1

0 (Ω) such that

(7.1) u = ∇ϕ0 + v

and the fields ∇ϕ0, v are L2-orthogonal.

Proof. Let ϕ0 be a minimizer of Du on H1
0 (Ω). It exists and is unique from Theorem 6.3.

Condition (B1) and elliptic regularity results imply that ϕ0 is in H2(Ω), see [10, Section
6.3, Theorem 4] for a proof. Define v := u − ∇ϕ0, then L2-orthogonality follows from
(6.8) and ε = I3. Also 〈curlA,∇ϕ0〉 = 0 for all A ∈ H1(Ω; R3) [3, Theorem 3.1 (II)] or
[9, Chapter IX, Section 1.3, Proposition 3]. Then (3.18) implies that (∇ϕ0) ∧ ν = 0 on
∂Ω in a weak sense. Thus v ∈ V 1

τ0(Ω) as claimed. �

The map PG0 : H1(Ω; R3) → H1(Ω; R3) defined by PGu := ∇ϕ0 with ϕ0 as in this
proof is a continuous linear projection when (B1) holds. Thus its complement PSu :=
u − ∇ϕ0 is the projection onto V 1

τ0(Ω). The following is a similar decomposition result
for H1(Ω; R3). It is worth noting that the regularity of ϕ here is a consequence of results
about vector fields.

Proposition 7.2. Assume Ω satisfies (B1). Given u ∈ H1(Ω; R3), there is a unique
v ∈ V 1

ν0(Ω) and ϕ ∈ H2(Ω) ∩H1
m(Ω) such that

(7.2) u = ∇ϕ+ v

and the fields ∇ϕ, v are L2-orthogonal.

Proof. Let Du be the functional defined by (6.2) with ε ≡ I3 on Ω and ϕ be a minimizer of
Du on H1

m(Ω). It exists and is a solution of (6.3), so it is a weak solution of ∆ϕ = div u ∈
L2(Ω). Thus g := ∇ϕ is in HDC(Ω) as curl g = 0 in a weak sense. Define v := u −∇ϕ,
then v ∈ V 1

ν0(Ω) so it is in HDCν0(Ω). From [9, Chapter IX, Section 1.2, Theorem 3],
v ∈ H1(Ω; R3) so g is also and thus ϕ ∈ H2(Ω) as claimed. The orthogonality follows
from (6.3) with ε = I3. �

Just as above, when (B1) holds, the map PG : H1(Ω; R3) → H1(Ω; R3) defined by
PGu := ∇ϕ with ϕ as in this proof is a continuous linear projection and its complement
is the projection onto V 1

ν0(Ω).
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We next characterize the vector potentials of the solenoidal components of these
Sobolev fields. This depends on the topology of the region Ω. Let Hν0(Ω),Hτ0(Ω) be the
spaces of harmonic fields on Ω which satisfy the boundary conditions (3.19) respectively.
It is shown in [3, Sections 9, 10] that these are finite dimensional subspaces of H1(Ω; R3)
when (B1) holds. There they are characterized as the zero-eigenspaces of a vector-valued
eigenproblem.

Set dim Hν0(Ω) = L and dimHτ0(Ω) = J . Then de Rham theory says that the
first and second Betti numbers of Ω are L and J respectively. Let PH1 and PH2 be
the projections of H1(Ω; R3) onto these spaces. PH1 = 0 if Ω is simply connected and
PH2 = 0 if ∂Ω is connected. Let Zν0(Ω) be the subspace of V 1

ν0(Ω) which is L2-orthogonal
to Hν0(Ω), and define Pν : H1(Ω; R3) → Zν0(Ω) by

(7.3) Pνu := u− PGu− PH1u

where PG and PH1 are defined as above. From these definitions û differs from u by an
irrotational field, so curlu = curl û. The following result is [3, Theorem 5.1].

Theorem 7.3. Assume Ω satisfies (B1) and Pν is defined by (7.3). For each u ∈
H1(Ω; R3), û := Pνu satisfies curlu = curl û and there is a constant c > 0 such that

(7.4)

∫
Ω

| curlu|2 d3x ≥ c

∫
Ω

|û|2 d3x,

There is a similar result for H1
τ0(Ω; R3). Define Zτ0(Ω) be the subspace of V 1

τ0(Ω)
which is L2-orthogonal to Hτ0(Ω), and define Pτ : H1

τ0(Ω; R3) → Zτ0(Ω) by

(7.5) Pτu := u− PG0u− PH2u

where PG0 is the gradient projection in Theorem 7.1 and PH2 is defined above. This holds
as for the previous theorem but now (7.6) follows from [3, Theorem 6.1].

Theorem 7.4. Assume Ω satisfies (B1) and Pτ is defined by (7.5). For each u ∈
H1(Ω; R3), ũ := Pτu satisfies curlu = curl ũ and there is a constant c > 0 such that

(7.6)

∫
Ω

| curlu|2 d3x ≥ c

∫
Ω

|ũ|2 d3x.

It is worth noting that the optimal constants in (7.4) and (7.6) are the same and
depend only on the region Ω, see [3, Section 11]. The projections Pν and Pτ are used to
specify unique vector potentials for fields in these Sobolev spaces.

8. Vector Potentials of L2 fields.

For given L2 field u, the vector potential A in (4.1) may also be defined by a
variational principle. Let V be the closure of Curlε(Ω) in L2(Ω; R3). Given u ∈ L2(Ω; R3),
from Proposition 4.2, the potential A in the representation (5.4) minimizes the functional
Cu : H1

ν0(Ω; R3) → R defined by

(8.1) Cu(A) :=

∫
Ω

[(ε−1 curlA) · curlA− 2u · curlA ] d3x,
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Here ε(x)−1 is the inverse matrix of ε(x) and satisfies (E1) when ε does. Unfortunately
this functional is not coercive on H1

ν0(Ω; R3). Let Zν0(Ω) be the space defined in the
preceding section. It is a closed subspace of H1

ν0(Ω; R3). Let Pν be the corresponding
projection onto Zν0(Ω) then, from Theorem 7.3,

(8.2) Cu(PνA) = Cu(A) for all A ∈ H1
ν0(Ω; R3).

Consider the problem of minimizing Cu on Zν0(Ω). From (8.2)

(8.3) inf
A∈H1

ν0(Ω:R3)
Cu(A) = inf

A∈Zν0(Ω)
Cu(A)

and Â minimizes Cu on H1
ν0(Ω; R3) if and only if PνÂ minimizes Cu on Zν0(Ω) . The basic

results about this minimization of Cu may be summarized as follows.

Theorem 8.1. Assume Ω, ε satisfy (B1) and (E1). For each u ∈ L2(Ω; R3), there is a

unique Â which minimizes Cu on Zν0(Ω). A field A minimizes Cu on H1
ν0(Ω; R3) if and

only if

(8.4)

∫
Ω

[
ε−1(curlA)− u

]
· (curlB) d3x = 0 for all B ∈ H1

ν0(Ω; R3).

In this case

(8.5) PνA = Â, or A = Â+∇ϕ+ h,

for some ϕ ∈ H1(Ω) and h ∈ Hν0(Ω).

Proof. When ε satisfies (E1), so does ε−1 and, (2.3) yields

(8.6) e−1
1 |v|2 ≤ (ε(x)−1v) · v ≤ e−1

0 |v|2 .

for each v ∈ R3. The functional Cu defined by (8.1) is continuous and convex on H1
ν0(Ω),

so it is weakly lower semicontinuous on H1
ν0(Ω) and also on Zν0(Ω). From (8.6) and (7.4),

there is a c > 0 such that

Cu(A) ≥ 1

2

∫
Ω

e1
−1

[
|curlA|2 + c |A|2

]
dx− ‖v‖ ‖curlA‖ .

Thus Cu is coercive and strictly convex so there is a unique minimizer Â of Cu on Zν0(Ω).
Given C ∈ H1

ν0(Ω; R3), there is a unique L2-orthogonal decomposition C = A+∇ϕ+ h
with A ∈ H1

ν0(Ω; R3), ϕ ∈ H1(Ω) and h ∈ Hν0(Ω) from [3, eq. (3.8)]. In this case curlC =

curlA so (8.3) holds. Since Â is the unique minimizer on Zν0(Ω), this representation
theorem and (8.3) yields (8.5). The functional Cu is Gateaux differentiable on H1

ν0(Ω; R3)
and the extremality condition obeyed at a minimizer may be verified to be (8.4). �

Equation (8.4) is the weak form of the system

curl
(
ε−1 curl A

)
= curlu on Ω,(8.7)

(ε−1 curl A) ∧ ν = u ∧ ν on ∂Ω,(8.8)

A · ν = 0 on ∂Ω.(8.9)
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Each fieldA of the form (8.5) is a solution of this problem. The unique solution Â ∈ Zν0(Ω)
is also solenoidal and obeys

(8.10) 〈A, h〉 = 0 for all h ∈ Hν0(Ω).

Corollary 8.2. Assume Ω, ε as above, then Curlε(Ω) is a closed subspace of L2(Ω; R3).
If u ∈ L2(Ω; R3), the ε-orthogonal projection of u onto Curlε(Ω) is ε−1 curlA where A is
any solution of (8.4).

Proof. This proof is the same as that of Corollary 6.2 but with Curlε(Ω) in place of
G(Ω). �

The projection of L2(Ω; R3) onto Curlετ0(Ω) may be analyzed in a similar man-
ner. The functionals are the same but the space of allowable vector potentials now is
H1

τ0(Ω; R3). This leads to the following results whose proofs are similar to the above.

Theorem 8.3. Let Ω and ε obey (B1) and (E1). For each u ∈ L2(Ω; R3), there is a
unique Ã which minimizes Cu on Zτ0(Ω). A field A minimizes Cu on H1

τ0(Ω; R3) if and
only if

(8.11)

∫
Ω

[
ε−1(curlA)− u

]
· (curlB) dx = 0, for all B ∈ H1

τ0(Ω; R3).

In this case

(8.12) A = Ã+∇ϕ+ h for some ϕ ∈ H1
0 (Ω) and h ∈ Hτ0(Ω).

Corollary 8.4. When ε and Ω as above, Curlετ0(Ω) is a closed subspace of L2(Ω; R3).
If u ∈ L2(Ω; R3) the ε-orthogonal projection of u onto Curlετ0(Ω) is ε−1 curlA, where
A ∈ H1

τ0(Ω; R3) is a solution of (8.11).

Equivalently this projection is ε−1 curlA where A is a weak solution of equation
(8.7) in H1

τ0(Ω; R3). Here the unique solution Ã is solenoidal and satisfies

(8.13) 〈A, k〉 = 0 for all k ∈ Hτ0(Ω).

9. L2- and ε-orthogonality

To complete the proof of Theorem 5.2, the spaces of ε-harmonic vector fields are
characterized explicitly. We use the following result which may be interpreted as saying
that each vector field in L2(Ω; R3) can be written as a sum of a gradient and a curl. These
results are proved in chapter IX, section 1.3 of [9] - and the versions below just extract
the statements needed here.

Theorem 9.1. Suppose Ω satisfies (B1) and u ∈ L2(Ω; R3).

(i) If u is L2-orthogonal to G(Ω), then u ∈ Curl(Ω).
(ii) If u is L2-orthogonal to Curl(Ω), then u ∈ G(Ω).
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Proof. The proof of these follow from the analysis of [9, Chapter IX, Section 1.3]. The
assumptions (B1) are sufficient to guarantee the condition (1.45) i) required there.

(i) First assume that u ∈ H1(Ω; R3), then [9, Chapter IX, Section 1.3, Corollary 5]
implies that

(9.1) u = ∇ϕ + curlA with curlA · ν = 0 on ∂Ω.

Multiply this by ∇ϕ and integrate over Ω. If u is L2-orthogonal to G(Ω), use the diver-
gence theorem to see that ‖∇ϕ‖2

2 = 0. Hence u ∈ Curl(Ω). Since (i) holds for all such
H1 fields it holds for all such L2 fields by a density argument.

(ii) This follows from proposition 3 of section 1.3 cited above; especially with the
help of Proposition 4.1 of this paper. �

A similar result holds for ε-orthogonal subspaces.

Corollary 9.2. Suppose Ω satisfies (B1), ε satisfies (E1) and u ∈ L2(Ω; R3).

(i) If u is ε-orthogonal to G(Ω), then u ∈ Curlε(Ω),
(ii) If u is ε-orthogonal to Curlε(Ω), then u ∈ G(Ω).

Proof. If u is ε-orthogonal to G(Ω), then εu is orthogonal to G(Ω) so (i) follows from (i)
of Theorem 9.1 and the definition (4.7). Similarly part (ii) follows directly from (ii) of
Theorem 9.1. �

The question as to whether the results described in this paper hold under weaker
regularity conditions on the region than (B1) appear to require that a version of this
Theorem 9.1 hold on such regions. It is of considerable interest to investigate what
characterization of these orthogonal complements holds under other reasonable geometric
or regularity assumptions on Ω. These results are required for the explicit characterization
of the ε-harmonic vector fields in the next section.

10. The space Hετ0(Ω)

In this section the ε-harmonic vector fields in the decomposition (5.4) are charac-
terized explicitly and we show that when Ω satisfies (B1), the dimension of the space
Hετ0(Ω) is J ; one less than the number of connected components of the boundary of Ω.

Let the components of ∂Ω be denoted Σ0, Σ1, . . ., ΣJ , with the connected region Ω
being a subset of the region interior to Σ0. When J = 0 these spaces of harmonic vector
fields are trivial. When J ≥ 1, Ω is the region interior to Σ0 and exterior to each of
the other components Σj. Thus Ω may be viewed as a region with J “holes” and J is
the second Betti number of Ω. To prove the results on the dimensions of the spaces of
ε-harmonic vector fields introduced in Section 3, we obtain an explicit characterization of
these fields. Assume J ≥ 1, Ω satisfies (B1) and the Σj are as above. For each 1 ≤ j ≤ J ,
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let Kj be the class of functions in H1(Ω) which satisfy

χ(x) =

{
1 for x ∈ Σj,

0 for x ∈ ∂Ω \ Σj.
(10.1)

It is straightforward to verify that Kj is a closed convex subset of H1(Ω). Let D0 :
H1(Ω) → R be the functional defined by

(10.2) D0(ϕ) :=

∫
Ω

(
ε(∇ϕ) · ∇ϕ

)
d2x.

Consider the variational problem of minimizing D0 on Kj. This problem has a unique
minimizer χj and it is the unique H1-solution in Kj of

(10.3) div (ε(x)∇χ(x)) = 0 on Ω,

subject to the boundary conditions (10.1). The proof of this parallels that of Theorem
6.3. Define

(10.4) h(j)(x) := ∇χj(x) for x ∈ Ω, 1 ≤ j ≤ J.

Then each h(j) is a non-zero L2-vector field on Ω. Under our regularity assumptions (B1)
and (E1) on Ω, ε, each h(j) be continuous on Ω and C1 on Ω.

Theorem 10.1. Assume Ω, ε satisfy (B1) and (E1). When J = 0, Hετ0(Ω) = {0}.
When J ≥ 1, then {h(1), . . . , h(J)} defined by (10.4) is a basis of Hετ0(Ω) and thus
dimHετ0(Ω) = J .

Proof. If h ∈ Hετ0(Ω), then it is ε-orthogonal to Curlε(Ω) by definition, so from part (ii)
of Theorem 9.2, h = ∇ϕh on Ω, where ∇ϕh is the projection of h onto G(Ω) defined by
Theorem 6.1 and Corollary 6.2. Now h satisfies (4.10), so

∇ϕh ∧ ν = h ∧ ν = 0 on ∂Ω.

Since the components of ∂Ω are C1, there are constants κj with

ϕh(x) = κj on Σj, 0 ≤ j ≤ J.

When J = 0, this and (10.3) imply that ϕh(x) ≡ κ0 is a solution for this potential and
hence h ≡ 0, so the first claim holds. When J ≥ 1, consider the function

X (x) = ϕh(x)−
J∑

j=1

cjχj(x)− κ0.

This function satisfies (10.3) and X (x) = κj − κ0 − cj on Σj. Take cj = κj − κ0 for
each j. Then X ≡ 0 on ∂Ω. The only such solution of (10.3) is identically 0 on Ω, so

ϕh(x) = κ0 +
J∑

j=1

(κj − κ0)χj(x) on Ω, and(10.5)

h(x) =
J∑

j=1

cj h
(j)(x),(10.6)
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upon taking gradients. Thus dimHετ0(Ω) ≤ J . If h(1), . . . , h(J) are linearly dependent,
there are constants a1, . . . , aJ , not all zero, such that

∇
( J∑

j=1

ajχj

)
(x) ≡ 0 on Ω.

Since Ω is connected, ψ(x) =
∑J

j=1 ajχj(x) must be constant on Ω. However

ψ(x) =

{
aj on Σj, 1 ≤ j ≤ J ,

0 on Σ0.

Then aj = 0 for all j which contradicts our assumption, so the theorem holds. �

Suppose J ≥ 1 and v ∈ L2(Ω; R3). Then the projection of L2(Ω; R3) onto Hετ0(Ω)
is given by

(10.7) PHτv =
J∑

j=1

cjh
(j)(x),

where (c1, . . . , cJ) is the solution of the linear system

(10.8)
J∑

j=1

hkj cj = vk, 1 ≤ k ≤ J.

Here hkj = 〈h(k), h(j)〉ε and vk = 〈v, h(k)〉ε. Note that this projection is orthogonal
and continuous on L2(Ω; R3) by construction and its range consists of smooth fields on
Ω from regularity theory for (10.3)–(10.1). The matrix H := (hjk) is symmetric and
non-singular as it is the Grammian matrix of a set of linearly independent vector fields.
In particular this projection is the zero field if and only if each vk = 0. When (E1)
holds, and v is smooth enough, this is the requirement that the flux of εv through each
boundary component is zero. That is, for each j, 1 ≤ j ≤ J ,∫

Σj

εv dσ = 0.

Let ξi := {x(i)(t) : 0 ≤ t ≤ 1} be a C1 curve in Ω with x(i)(0) ∈ Σ0, x
(i)(1) ∈ Σi and

x(i)(t) ∈ Ω for 0 < t < 1. When h(j) is defined by (10.4), for 1 ≤ i, j ≤ J , then

(10.9)

∫
ξi

h(j) =

{
1 if i = j

0 if i 6= j.

This is a consequence of the boundary condition (10.1) and the chain rule. It leads to the
following characterization of coefficients in this projection.

Theorem 10.2. Assume Ω satisfies (B1) with J ≥ 1. If v is a continuous vector field
on Ω which is ε-orthogonal to Curlε(Ω), the projection PHτ of L2(Ω; R3) onto Hετ0(Ω) is
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given by (10.7) with

(10.10) cj =

∫
ξj

v, 1 ≤ j ≤ J.

Proof. With v as in the theorem, (5.4) implies that v = ∇ϕv + h for some ϕv ∈ H1
0 (Ω)

and h ∈ Hετ0(Ω). Since h is continuous on Ω, so is ∇ϕv. The line integral of ∇ϕv over ξj
is zero from the chain rule. Hence (10.9) and (10.6) imply (10.10). �

The coefficients cj here may be regarded as the potential difference of the scalar
potential ϕ0 +ϕh of v between the boundary surfaces Σ0 and Σj. For a general continuous
vector field on Ω, (10.10) becomes

cj =

∫
ξj

[v − ε−1 curlA]

where A is a vector potential of v defined as in Theorem 8.1.

11. The space Hεν0(Ω)

When ε(x) ≡ I3, the space Hεν0(Ω) arises in topology. Its construction and prop-
erties are described by Cessenat in [9, Chapter 9, Section 1.3], Foias and Temam [12],
Picard [16] and Saarinen [17] amongst other references. The dimension L of this space is
a topological invariant of the region. It is the first Betti number, β1(Ω) or the genus of
the region Ω and counts the number of handles in the region.

Let {S1, S2, . . . , SL} be closed subsets of Ω which are C2-surfaces with boundary
and satisfy

S1: Sl ∩ Sm = ∅ for 1 ≤ ` < m ≤ L.
S2: Sl is never tangential to ∂Ω.
S3: the region Ωc := Ω\(∪L

`=1 S`) is simply connected.

When [S1]–[S3] hold, the sets {S1, . . . , SL} are called cutting surfaces for the region Ω. The

above references describe the construction of a basis {k̃(`1), . . . , k̃(L)} of Hν0(Ω) by solving
certain transmission problems for harmonic functions that are discontinuous across this
family of cutting surfaces. Choose the fields k(`) to satisfy the flux conditions;

(11.1)

∫
Sj

k̃(`) dσ = δjl, 1 ≤ j, ` ≤ L.

Note that this is not the usual convention described in the above references, but it is a
permissible alternative to the standard condition involving certain loop integrals.

When ε is a general matrix obeying (E1), a basis of Hεν0(Ω) using transmission
problems was described by Picard in [16] and he showed the dimension of the space is
L. Also Saarinen in [17] gives an abstract proof, credited to K. J. Witsch, that under
conditions similar to ours, the space Hεν0(Ω) has dimension L. Here we first describe an
explicit construction of a basis for Hεν0(Ω) which is based on perturbation of the basis
with ε = I3 and does not require the solution of another transmission type problem.
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Note that if a field k ∈ Hεν0(Ω) then k ∈ Curlε(Ω), from part (i) of Theorem 9.2
as k is ε-orthogonal to G(Ω). Define h := εk, then h ∈ V 1

ν0(Ω) and is L2-orthogonal to
G(Ω). From the (unweighted) Hodge-Weyl decomposition (5.3) there is a B ∈ V 1

τ0(Ω) and

a k̃ ∈ Hν0(Ω) such that

(11.2) h = curl B + k̃.

Given ` with 1 ≤ ` ≤ L, define B(l) to be the unique minimizer of the functional
Cl : Zτ0(Ω) → R defined by

(11.3) Cl(B) := C−ε−1k̃(l)(B),

where Cu is defined by (8.1). This problem has a unique solution from Theorem 8.3 and

B(`) satisfies (8.7) with −ε−1k̃(`) in place of u. Define

(11.4) k(`) := ε−1[curlB(`) + k̃(`)], 1 ≤ ` ≤ L.

These fields are non-zero L2 fields on Ω. They could also be defined using a modification
of the proof of [9, Chapter 9, Section 1.3, Proposition 2]. These fields are continuous on
Ω and C1 on Ω.

Theorem 11.1. Assume Ω, ε satisfy (B1) and (E1). When Ω is simply connected,
Hεν0(Ω) = {0}. When L ≥ 1, then {k(1), . . . , k(L)} defined by (11.4) is a basis of
Hεν0(Ω) and dimHεν0(Ω) = L.

Proof. When k(`) is defined by (11.4), then it is irrotational, since B(`) satisfies (8.7). It is

ε-solenoidal since k̃(l) is solenoidal. Hence it is in Hεν0(Ω). Integrate εk(`) over a cutting
surface Sj; then Stokes’ Theorem and (11.1) yield

(11.5)

∫
Sj

εk(`) =

∫
Sj

εk̃(`) = δj`, 1 ≤ j, ` ≤ L.

as each B(`) ∈ Zτ0(Ω). Hence the fields are linearly independent and are a basis as
claimed. �

Suppose L ≥ 1 and v ∈ L2(Ω; R3). Then the projection of L2(Ω; R3) onto Hεν0(Ω)
is given by

(11.6) PHνv(x) =
L∑

`=1

c`k
(`)(x),

where (c1, . . . , cL) is the solution of a linear system similar to (10.8). Namely

(11.7)
L∑

`=1

hj` c` = vj, 1 ≤ j ≤ L.

Here hjl = 〈k(j), k(l)〉ε and vj = 〈v, k(j)〉ε. The matrix H := (hjl) is symmetric and non-
singular as it is the Grammian matrix of a set of linearly independent vector fields. Since
the k(l) are smooth, the range of this projection consists of nice fields and the projection
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is continuous on L2(Ω; R3) by construction. The projection is zero if and only if the flux
of εv through each cutting surface is zero. That is,∫

S`

εv dσ = 0, for each 1 ≤ ` ≤ L.

This time the coefficients in this expansion may also be determined as fluxes across the
cutting surfaces using the following result.

Theorem 11.2. Assume Ω satisfies (B1) with L ≥ 1. If v is a continuous vector field on
Ω which is ε-orthogonal to G(Ω), the projection PHν of L2(Ω; R3) onto Hεν0(Ω) is given
by (11.6) with

(11.8) c` =

∫
S`

εv dσ, 1 ≤ ` ≤ L.

Proof. With v as in the theorem, (5.3) implies that v = ε−1 curlA+k for some A ∈ Vτ0(Ω)
and k ∈ Hεν0(Ω). Since v, ε−1, k are continuous on Ω, so is curlA and then the surface
integral of curlA over S` is zero from Stokes’ theorem and a density argument. Hence
(11.6) and (11.5) implies (11.8). �

For a general continuous vector field on Ω, (11.8) becomes

c` =

∫
S`

ε(v −∇ϕ) dσ,

where ϕ is the scalar potential of v defined as in Theorem 6.1. Let W (Ω) be the class of
all irrotational L2-vector fields on Ω. From the unweighted Hodge-Weyl decomposition
and (i) of proposition 4.2, it follows that

(11.9) W (Ω) = G(Ω)⊕Hν0(Ω).

This holds as the non-zero fields in Curlετ0(Ω) have non-zero curls from the description of
the basis of this space in [3, Section 10]. This leads to the following result—well-known
when w is smooth—that is needed below.

Theorem 11.3. Assume Ω satisfies (B1) and w ∈ L2(Ω; R3) is a continuous irrotational
vector field on Ω. Then there is a ϕ ∈ H1(Ω) with w = ∇ϕ if and only if

(11.10)

∫
γ

w = 0 for every closed C1-curve γ ⊂ Ω.

Proof. True if Hν0(Ω) = {0}. When Ω is not simply connected, then the representation
(11.9) implies that w = ∇ϕ+k for some k ∈ Hν0(Ω). Using the description of this space
in [12] or [9, Chapter 9], this k = 0 if and only if (11.10) holds. �
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12. The Prescribed Flux div-curl Problem

We now describe the L2-solvability and well-posedness of various div-curl problems
on domains which satisfy (B1). First consider the problem of finding finite-energy solu-
tions subject to given boundary fluxes. Namely given a matrix valued function ε, the
vector-valued function ω and scalar functions ρ and µ find solutions v ∈ L2(Ω; R3) of the
system

div
(
ε(x)v(x)

)
= ρ(x) and(12.1)

curl v(x) = ω(x) on Ω, with(12.2) (
ε(x)v(x)

)
· ν(x) = µ(x) on ∂Ω.(12.3)

Various results on the finite-energy solvability of this problem have been described
by Picard in [16] and Saranen in [17] and [18]. They used operator-theoretic methods on
Hilbert spaces. There is also a considerable literature on the classical solvability of these
problems. Here we use variational principles and variational methods to obtain somewhat
different, and sharper, results. Some results of this type have already been described in
[4] for the case where ε(x) ≡ e(x)I3 is everywhere a multiple of the identity matrix.

Throughout the following analysis we assume the following integrability conditions
which are necessary for the functionals in the variational principles to be continuous.

Condition CF. ρ ∈ L6/5(Ω), ω ∈ L6/5(Ω; R3) and µ ∈ L4/3(∂Ω).

First note that if there is a solution of this system then the data must satisfy certain
compatibility conditions

Proposition 12.1. Assume (B1), (CF) and (E1) hold and v ∈ L2(Ω; R3) is a weak
solution of (12.1)–(12.3), then the data must satisfy

(NC1):

∫
Ω

ρ d3x =

∫
∂Ω

µ dσ,

(NC2):

∫
Ω

ω · A d3x = 0 for all irrotational fields A ∈ H1
τ0(Ω; R3).

Proof. Take ϕ ≡ 1, u = εv and substitute in (3.17). Then (NC1) follows. Multiply
(12.2) by ∇ϕ with ϕ ∈ C∞

c (Ω) and use (3.16). Then 〈ω,∇ϕ〉 = 0, so ω is orthogonal to
G0(Ω). Similarly multiply (12.2) by h ∈ Hτ0(Ω) and use (3.16). The class of irrotational
fields in H1

τ0(Ω; R3) is dense in G0(Ω) ⊕Hτ0(Ω) from the analysis of Section 7 so (NC2)
follows. �

These are necessary conditions for the system (12.1)–(12.3) to have a finite-energy
(i.e., L2) solution. Condition (NC2) is more recognizable in a differential form. The
condition that ω is orthogonal to G0(Ω) is the weak form of divω = 0 on Ω. When
J ≥ 1, this condition also requires that ω be orthogonal to any field in Hτ0(Ω). The
description of these fields in Section 10 shows that this is equivalent to the condition that
there be no net flux of ω through any boundary component Σj.
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We next show that when these conditions hold, there is at least one finite-energy
solution by using the decomposition (5.3). This particular representation leads to a de-
coupled system of elliptic boundary-value problems for the potentials ϕ and A. We then
describe, and prove results about, variational principles for these potentials. Thus we seek
ϕ ∈ H1(Ω), A ∈ V 1

τ0(Ω) and k ∈ Hεν0(Ω) such that

(12.4) v(x) = ∇ϕ(x) + ε(x)−1 curlA(x) + k(x)

is a solution of (12.1)–(12.3). Substituting this in (12.1), ϕ must satisfy

div
(
ε(x)∇ϕ(x)

)
= ρ(x) on Ω, and(12.5)

(ε∇ϕ) · ν = µ on ∂Ω.(12.6)

A weak solution of this system is a function ϕ in H1(Ω) satisfying

(12.7)

∫
Ω

[(ε∇ϕ) · ∇X + ρX ] d3x−
∫

∂Ω

µX dσ = 0

for all X ∈ H1(Ω). Consider the variational problem of minimizing the functional D :
H1(Ω) → R defined by

(12.8) D(ϕ) :=

∫
Ω

[
1

2
(ε(∇ϕ) · ∇ϕ) + ρϕ

]
d3x−

∫
Ω

µϕ dσ.

The following theorem provides an existence result for this variational principle and thus
also for H1-solutions of (12.7).

Theorem 12.2. Assume (B1), (CF) and (E1) hold. Then D defined by (12.8) is bounded
below on H1(Ω) if and only if (NC1) holds. In this case, there is a unique function ϕ̂
which minimizes D on H1

m(Ω). A function ϕ̃ minimizes D on H1(Ω) if and only if it
satisfies (12.7). In this case ϕ = ϕ̃+ c for some constant c.

Proof. When ϕ(x) ≡ c is constant on Ω,

D(c) = c

∫
Ω

ρ d3x− c

∫
∂Ω

µ dσ.

Letting |c| → ∞, it follows thatD is unbounded below onH1(Ω) if and only if (NC1) holds.
Let Pm be the projection of H1(Ω) onto H1

m(Ω) defined in Section 5, Du(Pmϕ) = Du(ϕ)
for all ϕ ∈ H1(Ω). So a function ϕ̃ minimizes D on H1(Ω) if and only if Pmϕ̃ minimizes
D on H1

m(Ω). When ϕ ∈ H1(Ω), then ϕ ∈ Lq(Ω) for q ≤ 6 and its trace on ∂Ω ∈ Lr(∂Ω)
for r ≤ 4/3 from the usual imbedding theorems. Thus the last two terms in (12.8) are
continuous linear functionals on H1(Ω) under our assumptions on ρ and µ, and D is a
continuous, convex functional on H1(Ω). Hence it is weakly lower semi-continuous. From
Poincaré’s inequality as in (6.4), there are positive constants c0, c1, c2 such that

(12.9) D(ϕ) ≥ c0 ‖∇ϕ‖2 − c1 ‖ρ‖6/5 ‖∇ϕ‖ − c2 ‖µ‖∂Ω,4/3 ‖∇ϕ‖

for ϕ ∈ H1
m(Ω). Hence D is strictly convex and coercive on H1

m(Ω) and attains a unique
minimizer. D is Gateaux differentiable on H1(Ω) with

(12.10) 〈D′(ϕ),X〉 =

∫
Ω

[(ε∇ϕ) · ∇X + ρX ] d3x−
∫

∂Ω

µX dσ.
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At a minimizer of ϕ̃ of D on H1(Ω), (12.10) is zero for all X ∈ H1(Ω), so ϕ̃ satisfies (12.7).
Conversely if ϕ̃ satisfies (12.7) then ϕ̃ is a critical point of D on H1(Ω). The convexity of
D implies that such solutions minimize D and the theorem follows. �

Corollary 12.3. Assume the conditions of the theorem and (NC1). If ϕ̂ minimizes D on
H1

m(Ω) then there are constants k1, k2 which depend only on Ω, ε such that

(12.11) ‖∇ϕ̂‖2 ≤ k1(‖ρ‖6/5 + k2‖µ‖4/3,∂Ω.

Proof. Since 0 ∈ H1
m(Ω), the value of this variational problem is less than or equal to 0.

The inequality (12.9) implies that ϕ̂ satisfies

c0 ‖∇ϕ‖ ≤ c1 ‖ρ‖6/5 + c2 ‖µ‖∂Ω,4/3 ,

where c0 depends on ε, c1, c2 depend only on Ω. Thus (12.11) follows. �

Similarly if we take curls of both sides of (12.4), the vector potential satisfies

(12.12) curl
(
ε(x)−1 curlA(x)

)
= ω(x) on Ω.

The weak form of this is to find A ∈ H1
τ0(Ω; R3) which satisfies

(12.13)

∫
Ω

[(ε−1 curlA) · curlB − ω ·B] d3x = 0

for all B ∈ H1
τ0(Ω; R3). Consider the variational problem of minimizing C0 : H1

τ0(Ω; R3) →
R defined by

(12.14) C0(A) :=

∫
Ω

[
1

2
(ε−1 curlA) · curlA− ω · A

]
d3x.

This functional is not coercive on H1
τ0(Ω; R3). In fact, C0 is bounded below on H1

τ0(Ω; R3)
if and only if (NC2) holds. Then the following existence theorem holds.

Theorem 12.4. Assume (B1), (CF) and (E1) hold. Then C0 is bounded below on
H1

τ0(Ω; R3) if and only if (NC2) holds. When (NC2) holds there are minimizers of C0

on H1
τ0(Ω; R3) and a unique minimizer Â of C0 on Zτ0(Ω). A field Ã minimizes C0 on

H1
τ0(Ω; R3) if and only if it satisfies (12.13). In this case

(12.15) Ã = Â+∇ϕ+ h for some ϕ ∈ H1
0 (Ω) and h ∈ Hτ0(Ω).

Proof. The functional C0 is similar to the functional Cu treated in Theorem 8.3; the dif-
ferences are a factor of 2 and the linear terms. Let Pτ be the projection of H1

τ0(Ω; R3)
onto Zτ0(Ω), then

PτA := A−∇ϕ− h,

where ϕ ∈ H1
0 (Ω) and h := PH2A ∈ Hτ0(Ω) are as in equation (7.5). From (NC2), we

have that ∫
Ω

ω · (∇ϕ+ h) d3x = 0

for all such ϕ, h. Thus C0(PτA) = C0(A) for all A ∈ H1
τ0(Ω; R3) and C0 is bounded below

on H1
τ0(Ω; R3) as it is bounded below on Zτ0(Ω). The other parts of this theorem are now

proved just as in Section 8, �
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Corollary 12.5. Assume the conditions of the theorem and (NC2). If Â minimizes C0

on Zτ0(Ω), then there is a constant k3 which depend only on Ω, ε such that

(12.16)
∥∥∥curl Â

∥∥∥
2
≤ k3 ‖ω‖6/5.

Proof. Since 0 ∈ Zτ0(Ω), the value of this variational problem is less than or equal to 0.
The functional C0 is coercive on Zτ0(Ω) with

(12.17) C0(A) ≥ 1

2e1
‖curlA‖2 − c3‖ω‖6/5 ‖curlA‖

using the fact that the imbedding of H1(Ω; R3) into L6(Ω; R3) is continuous and Holder’s
inequality. Here c3 depends only on Ω. Thus the minimizer of C0 on Zτ0(Ω) satisfies
(12.16). �

When ϕ̃ is a minimizer of D and Ã is a minimizer of C0 as above then, by linearity,

(12.18) v̂(x) = ∇ϕ̃(x) + ε(x)−1 curl Ã(x) + k(x)

a solution of (12.1)–(12.3) for each k ∈ Hεν0(Ω). That is, there is an L-parameter family
of solutions of this prescribed flux div-curl system. To specify a unique solution we must
further impose conditions that select a unique ε-harmonic field k. When Ω is simply
connected no further conditions are required. If however, β1(Ω) = L ≥ 1, then (11.6)
and (11.7) show that the solution is determined provided we know the values of the
inner products 〈v, k(`)〉ε. These are always well-defined and from Theorem 11.2, when
the solution v is smooth enough, they are the familiar flux integrals through the cutting
surfaces;

(12.19)

∫
S`

εv = κl, 1 ≤ ` ≤ L.

Note that this just involves solving a linear equation for the coefficients cl in the repre-
sentation (11.6) of k in terms of the basis of Hεν0(Ω).

This discussion leads to the following well-posedness result for this div-curl system.

Theorem 12.6. Assume (B1), (CF), (NC1), (NC2) and (E1) hold. If Ω is simply con-
nected then there is a unique solution v̂ ∈ L2(Ω; R3) of (12.1)–(12.3). When β1(Ω) =
L ≥ 1, there is an L-parameter family of solutions of this system. If S1, . . . , SL are L
independent cutting surfaces for the region Ω, and κ := (κ1, . . . , κL) is given, there is a
unique solution of this system which also satisfies (12.19).

The corollaries to the above existence results provide inequalities for the minima of
these variational problems which yield the following estimate for these solutions.

Theorem 12.7. Assume the conditions of Theorem 12.6 hold. Then there are constants
Cj depending only on Ω, ε such that the unique solution of (12.1)–(12.3) and (12.19)
satisfies

(12.20) ‖v‖2 ≤ C1(‖ρ‖6/5 + ‖ω‖6/5) + C2‖µ‖4/3,∂Ω + C3 |κ̃| ,
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Figure 1. Ω is the region exterior to the tubes Ω1,Ω2 and with connected
boundary ∂Ω. This region has J = 0, L = 2. To specify a unique solution
of the given flux div-curl problem in this region, the flux of v through two
independent cutting surfaces of the region must be prescribed.

where κ̃ := (κ1, . . . , κL).

Proof. The unique solution is given by (12.4) and, from (5.3), this is an ε-orthogonal
decomposition. Hence

‖v‖2
ε = ‖∇ϕ̂‖2

ε +
∥∥∥curl Â

∥∥∥2

ε
+ ‖k‖2

ε .

The norm ‖k‖ depends linearly on |κ̃| as it is the solution of a nonsingular finite dimen-
sional linear equation. Use the inequalities (12.11) and (12.16) and the fact that the ε
norm on L2 is equivalent to the usual L2-norm then (12.20) follows. �

13. The Tangential div-curl Problem

Similar analyses may be used to describe the well-posedness of the div-curl problem
of solving (12.1)–(12.2) subject to given tangential boundary data

(13.1) v(x) ∧ ν(x) = η(x) on ∂Ω.

This is sometimes called the electric-type boundary-value problem for the div-curl system.
Results on this problem have been described previously by Saranen [17] and [18], and by
Picard [16]. They used Hilbert space methods to obtain certain existence theorems.

We require the following integrability conditions on the data to ensure that our
functionals are continuous.
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Figure 2. Ω is the region obtained by rotating the cross-section depicted
above about the z-axis. It is a torus with 2 interior tori excised. The
boundary ∂Ω has 3 components; the exterior surface Σ0 and 2 interior
surfaces Σ1,Σ2. This region has J = 2, L = 3. To specify a unique solution
of the given flux div-curl problem in this region, the flux of v through three
independent cutting surfaces of the region must be prescribed.

Condition CT. ρ ∈ L6/5(Ω), ω ∈ L6/5(Ω; R3), and η ∈ L4/3(∂Ω; R3).

When there is an L2-solution of this system, (3.18) leads to the following.

Proposition 13.1. Assume (B1) and (CT) hold and v ∈ L2(Ω; R3) is an weak solution
of (12.1), (12.2) and (13.1) then the data must satisfy

(NC3): η is tangential on ∂Ω, and

(NC4):

∫
Ω

ω ·A d3x+

∫
∂Ω

η ·A dσ = 0 for every irrotational field A ∈ H1(Ω; R3).

Proof. Take scalar products of (13.1) with ν(x), then (NC3) holds. Substitute (12.2) and
(13.1) in (3.18) then (NC4) holds for all A ∈ H1(Ω; R3). �

The necessary condition (NC4) is stronger than condition (NC2) in the previous
section. It may be regarded as a weak form of certain equations on both Ω and ∂Ω.
From the analysis in Section 7, the class of irrotational fields in H1(Ω; R3) is precisely
G1(Ω) ⊕ Hν0(Ω), where G1(Ω) := {∇ϕ : ϕ ∈ H2(Ω)}. When ω, η are smooth, upon
substituting ∇ϕ for A in (NC4), it follows that ω must be solenoidal on Ω and also that

(13.2) div∂ η + ω · ν = 0 on ∂Ω.

Here div∂ is the surface divergence on the manifold(s) constituting ∂Ω. This compatibility
condition is a continuity equation which may be regarded as a continuous version of
Kirchoff’s rule for currents.
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When the region Ω is not simply connected, (NC4) also implies L conditions of the
form

(13.3)

∫
Ω

ω · k̃(`) d3x+

∫
∂Ω

η · k̃(`) dσ = 0, 1 ≤ ` ≤ L.

Here {k̃(1), . . . , k̃(L)} is a basis of Hν0(Ω) as in Section 11.

We next show that if the data obeys (CT) and (NC4), then there is at least one
finite-energy solution of this boundary-value problem. This is done by seeking solutions
of the form (5.4). Assume

(13.4) v(x) = ∇ψ(x) + ε(x)−1 curlB(x) + h(x),

with ψ ∈ H1
0 (Ω), B ∈ V 1

ν0(Ω) and h ∈ Hετ0(Ω) is a solution of (12.1), (12.2) and (13.1).
Substitute this in (12.1), then ψ ∈ H1

0 (Ω) satisfies

(13.5) div
(
ε(x)∇ψ(x)

)
= ρ(x) on Ω.

A weak solution of this system is a function ψ in H1
0 (Ω) which satisfies

(13.6)

∫
Ω

[(ε∇ψ) · ∇X + ρX ] d3x = 0 for all X ∈ H1
0 (Ω).

Consider the variational problem of minimizing D1 : H1
0 (Ω) → R defined by

(13.7) D1(ψ) :=

∫
Ω

[
1

2
(ε(∇ψ) · ∇ψ) + ρψ

]
d3x.

Theorem 13.2. Assume (B1), (CF) and (E1) hold. Then D1 defined by (13.7) has a

unique minimizer ψ̂ on H1
0 (Ω) and ψ̂ is the unique solution of (13.6) in H1

0 (Ω).

The proof of this is similar to, but simpler than that of Theorem 12.2.

Take curls of both sides of (13.4), then the vector potential satisfies

curl
(
ε(x)−1 curlB(x)

)
= ω(x) and(13.8)

divB = 0 on Ω.(13.9)

B · ν = 0 and (ε−1 curlB) ∧ ν = η on ∂Ω.(13.10)

The weak form of this system is to find B ∈ H1
ν0(Ω; R3) which satisfies

(13.11)

∫
Ω

[(ε−1 curlB) ·curlC−ω ·C] d3x−
∫

∂Ω

η ·C dσ = 0 for all C ∈ H1
ν0(Ω; R3).

Consider the variational problem of minimizing C : H1(Ω; R3) → R defined by

(13.12) C(B) := C0(B)−
∫

∂Ω

η ·B dσ,

with C0 being the functional from (12.14).
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Theorem 13.3. Assume (B1), (CT) and (E1) hold. Then C is bounded below on H1(Ω; R3)

if and only if (NC4) holds. In this case there is a unique minimizer B̂ of C on Zν0(Ω). A
field B̃ minimizes C on H1

ν0(Ω; R3) if and only if it satisfies (13.11). In this case

(13.13) B̃ = B̂ +∇ϕ+ k for some ϕ ∈ H1(Ω) and k ∈ Hν0(Ω).

Proof. This proof is similar to that of Theorem 12.4 except now we use the projection
Pν of H1

ν0(Ω; R3) onto Zν0(Ω) defined as in equation (7.3). Then C(PνA) = C(A) for all
A ∈ H1(Ω; R3) if and only if (NC4) holds. In this case, C is bounded below on H1(Ω; R3)
as it is bounded below on Zν0(Ω), if (NC4) fails then the functional is unbounded below
and the rest of the proof follows as before. �

By linearity, when ψ̃ is a minimizer of D1 and B̃ is a minimizer of C as above then

(13.14) v̂(x) = ∇ψ̃(x) + ε(x)−1 curl B̃(x) + h(x)

is a solution of (12.1)–(12.2) and (13.1) for each h ∈ Hετ0(Ω). If the region Ω has no holes,
then h = 0. When J ≥ 1 there is a J-parameter family of solutions of this tangential div-
curl problem. To specify a unique solution, additional conditions must be imposed that
determine the ε-harmonic component h. From (10.7) and (10.8), this is done when the
coefficients 〈v, h(k)〉ε are given. From Theorem 10.2, provided the solution is continuous,
this amounts to specifying the line integrals, or potential differences,

(13.15)

∫
ξj

v = αj, 1 ≤ j ≤ J,

where each ξj is a C1 curve in Ω which joins Σ0 to another component Σj of ∂Ω.

Ω
Σ

Σ

Σ1

2

3

γ

γ

γ1

2

3

Σ 0

Figure 3. Ω is the region interior to the closed surface Σ0 and exterior to
the three cavities with surfaces Σ1,Σ2,Σ3. This region has J = 3, L = 0.
The tangential div-curl problem in this region is well-posed when three
extra conditions are prescribed. If the solution is continuous, these may be
the line integrals of v along paths such as γ1, γ2, γ3.

Thus we have the following well-posedness result for the tangential div-curl boundary-
value problem.
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Theorem 13.4. Assume (B1), (CT), (NC4) and (E1) hold. If ∂Ω has only one com-
ponent, there is a unique solution v̂ ∈ L2(Ω; R3) of (12.1)–(12.2) and (13.1). When
β2(Ω) = J ≥ 1, there is an J-parameter family of solutions of this system. For given
α := (α1, . . . , αJ), there is a unique solution of this system which also satisfies (13.15).

Using the same methods as in the previous section, one may obtain norm inequalities
for the minima of each of these variational problems. Use the ε-orthogonality of the
decomposition (13.4), to obtain the following estimate about the solutions of this problem.

Theorem 13.5. Assume the conditions of Theorem 13.4 hold. Then there are constants
Cj depending only on Ω, ε such that the unique solution of (12.1)–(12.2) and (13.1), with
(13.15) satisfies

(13.16) ‖u‖2 ≤ C1(‖ρ‖6/5 + ‖ω‖6/5) + C2‖η‖4/3,∂Ω + C4 |α̃| ,

where α̃ := (α1, . . . , αJ).

14. Appendix

The following is a list of notation of spaces used in this paper for the normal and
tangential div-curl boundary-value problems. The section where they are defined is also
given.

• C(Ω), C(Ω; R3) and C(∂Ω) are spaces of continuous functions or fields defined on
Ω and in section 3.

• C∞
c (Ω), C∞

c (Ω; R3) are spaces of smooth functions and fields defined in Section 3.
• Curlε(Ω),Curlεν0(Ω),Curlετ0(Ω) are spaces of weighted curl fields defined in Sec-

tion 4.
• G(Ω), G0(Ω) are spaces of gradient fields defined in Section 4. G1(Ω) is defined

and used in Section 12.
• H1(Ω), H1

m(Ω), H1
0 (Ω) are standard Sobolev-Hilbert spaces of functions introduced

in Section 6. H1/2(∂Ω), H−1/2(∂Ω), H2(Ω) are also used.
• H1(Ω; R3), H1

ν0(Ω; R3), H1
τ0(Ω; R3) are each Hilbert spaces of vector fields defined

in Section 3.
• H(curl,Ω), H(div,Ω) and HDC(Ω) are subspaces of L2(Ω; R3) defined in section 3.
• Hεν0(Ω),Hετ0(Ω) are spaces of ε-harmonic fields defined in Section 5.
• Hν0(Ω),Hτ0(Ω) are spaces of harmonic fields defined in Sections 5 and 7.
• Lp(Ω), L1

loc(Ω), L1(∂Ω; dσ) are Lebesgue spaces of measurable functions defined in
Section 3.

• Lp(Ω; R3), L1(∂Ω; R3) are Lebesgue spaces of measurable vector fields defined in
Section 3.

• Vε(Ω), Vεν0(Ω) are L2 spaces of solenoidal vector fields defined in Section 4.
• V 1

ν0(Ω), V 1
τ0(Ω) are spaces of H1 solenoidal fields defined in Section 7.

• W 1,p(Ω),W 1,p(Ω; R3) are Sobolev spaces of functions and fields defined in Sec-
tion 3.

• Zν0(Ω), Zτ0(Ω) are subspaces defined in Section 7.
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There also are many projections defined in this paper. The following is a listing of
them; PV is the generic form of a projection onto a closed subspace V of a Hilbert space
H. Some of the projections have domain L2(Ω; R3), the domain is listed when it is not
L2(Ω; R3).

• Pm is the projection of H1(Ω) onto H1
m(Ω) defined in Section 6.

• PG is the projection of H1(Ω; R3) into itself defined in Section 7. PS := I −PG is
also defined there.

• PH1 and PH2 are projections of H1(Ω; R3) onto the spaces of harmonic fields
Hν0(Ω) and Hτ0(Ω) defined in Section 7.

• Pν is the projection of H1(Ω; R3) onto Zν0(Ω) defined in Section 7.
• PG0 and Pτ are the projections of H1

τ0(Ω; R3) onto G0(Ω) and Zτ0(Ω) defined in
Section 7.

• Phτ is the projection onto Hετ0(Ω) defined in Section 10.
• Phν is the projection onto Hεν0(Ω) defined in Section 11.
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