Homework #1

due Thursday, February 10, 2011

Norms in \mathbb{R}^N, Review of Continuous Functions, Minimizers.

1. Prove that if a sequence in \mathbb{R}^N is bounded then it has a convergent subsequence.

2. (i) Prove that if f is a continuous mapping of a metric space (X, ρ_X) into a metric space (Y, ρ_Y) then $f(E) \subseteq \overline{f(E)}$ for every set $E \subseteq X$ (where E is the closure of E).
 (ii) Prove that if f is continuous and E is compact then $f(E) = \overline{f(E)}$.
 (iii) Construct an example showing that $f(E) \subseteq \overline{f(E)}$ may not be true if f is not continuous.

3. Construct an example of a function in \mathbb{R} for each of the following situations:
 (i) A continuous function f and a bounded set E with $f(E)$ not bounded.
 (ii) A continuous function f and an open set E with $f(E)$ not open.
 (iii) A continuous function f and a closed set E with $f(E)$ not closed.

4. Show that $\rho(x, y) := |\ln(y/x)|$ is a metric on \mathbb{R}^+. Is (\mathbb{R}^+, ρ) a complete metric space?

5. Prove the following theorem:
 For each $x \in \mathbb{R}^n \setminus \{0\}$, $p > 0$, $\|x\|_p$ is a decreasing function of p. It’s strictly decreasing when x has more than 1 non-zero component. Moreover,
 $$\lim_{p \to \infty} \|x\|_p = \inf_{p \geq 1} \|x\|_p = \|x\|_\infty.$$

6. For $1 \leq p < q \leq \infty$ and $x \in \mathbb{R}^n \setminus \{0\}$ prove that
 $$0 \leq \|x\|_q \leq \|x\|_p \leq n^{1/p-1/q} \|x\|_q.$$

7. Let (X, ρ) be a metric space and $f : X \to \mathbb{R}$ be a function. Then f is l.s.c. on X if and only if the synoptic sets $S_c(f) = \{x \in X : f(x) \leq c\}$ are closed for each $c \in \mathbb{R}$.

8. For $m \in \mathbb{N}$ define $f_m(x) = \frac{x}{m} e^{-x/m}$ for $x \geq 0$ and $G(x) = \sup_{m \in \mathbb{N}} f_m(x)$. Show that $G(x)$ is continuous and bounded on $[0, \infty)$. What is $\lim_{x \to \infty} G(x)$?

9. Let $g(t)$ be a function on $0 \leq t \leq \infty$ such that $\lim_{t \to \infty} g(t) = +\infty$. Let f be a continuous function on a closed non-empty set E such that $f(x) \geq g(|x|)$. Show that there is a point $x_0 \in E$ that minimizes f on E.

10. Suppose that $f(x) = x^2 + 2a \cos x - 2bx$ with a, b constants. Show that this function has minimizers on \mathbb{R} and find the equations that they satisfy. Find bounds on this minimizer and show that the minimum value is less than or equal to $(a + 1)^2 - b^2 - 1$.

11. Consider f defined in #10. Show that there is a unique critical point of this function when $|a| < 1$. Show that there are multiple critical points of this function when $|a| > 1$.

1