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Topics to be covered

I Historical overview: aperiodic tilings of Euclidean space
and quasicrystals

I Lattices, crystallographic point sets, and cut and project
sets in Euclidean space

I Rotational symmetries, crystallographic restriction theorem
I Diffraction
I Complexity and repetitivity of patches



§1 Historical overview: quasicrystals and
aperiodic tilings of Euclidean space



Physical quasicrystals

I A physical crystal is a material whose atoms or molecules
are arranged in a highly order way.

I Crystallographic Restriction Theorem (Haüy, 1822):
Rotational symmetries in the diffraction patterns of
(periodic) crystals are limited to 1,2,3,4, and 6-fold.

I Shechtman (1982): Discovered crystallographic materials
with diffraction exhibiting 10-fold symmetry.

I The ‘forbidden symmetries’ observed in quasicrystals are
possible because they lack translational symmetry.
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Wang tiles and the domino problem (1960’s)



Example of a Wang tiling



The Domino Problem

I Is there an algorithm which, when given any finite
collection of Wang tiles, can decide whether or not it can
tile the plane?

I Wang (1961): There is an algorithm which can determine
whether or not a finite collection of Wang tiles can tile the
plane periodically.

I Berger (1966) answered the domino problem in the
negative, by relating it to the halting problem for Turing
machines.

I Berger also came up with an explicit example of a
collection of 20,426 Wang tiles which can tile the plane,
but only aperiodically.



The Domino Problem

I Is there an algorithm which, when given any finite
collection of Wang tiles, can decide whether or not it can
tile the plane?

I Wang (1961): There is an algorithm which can determine
whether or not a finite collection of Wang tiles can tile the
plane periodically.

I Berger (1966) answered the domino problem in the
negative, by relating it to the halting problem for Turing
machines.

I Berger also came up with an explicit example of a
collection of 20,426 Wang tiles which can tile the plane,
but only aperiodically.



Aperiodic sets of prototiles

I More recently, an argument due to Kari and Culik (1996),
led to discovery of the following set of Wang tiles:

I In (2015), Emmanuel Jeandel and Michael Rao found a set
of 11 Wang tiles with 4 colors which tile the plane only
aperiodically, and they proved that this is both the minimum
possible number of tiles, and of colors for such a tiling.
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Aperiodic tilings of Euclidean space



Three methods for tiling Euclidean space

I Local matching rules: Start with a collection of prototiles,
and rules for how they may be joined together (e.g. Wang
tilings).

I Substitution rules: Start with a finite collection of prototiles
tiles and a rule for inflating them, and then partitioning the
inflated tiles back into prototiles.

I Cut and project method: A dynamical method which
projects a slice of a higher dimensional lattice to a lower
dimensional space.
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§2 Point sets in Euclidean space



Definitions and terminology

I A countable subset of Rk is called a point set.
I Y ⊆ Rk is uniformly discrete if there is a constant r > 0

such that, for all y ∈ Y ,

Br (y) ∩ Y = {y}.

I Y ⊆ Rk is relatively dense if there is a constant R > 0
such that, for any x ∈ Rk ,

BR(x) ∩ Y 6= ∅.

I A set Y ⊆ Rk which is both uniformly discrete and
relatively dense is called a Delone set.



First examples of Delone sets

I A lattice in Rk is a discrete subgroup Λ 6 Rk with the
property that the quotient space Rk/Λ has a Lebesgue
measurable fundamental domain with finite volume.

I A set Y ⊆ Rk is called a crystallographic point set if it
can be written as

Y = Λ + F ,

where Λ is a lattice in Rk and F ⊆ Rk is a finite set.



Groups of periods

I If Y ⊆ Rk is a point set, then a point x ∈ Rk with the
property that Y + x = Y is called a period of Y . The
collection of all periods of Y forms a group, called its
group of periods.

I We say that Y is nonperiodic if its group of periods is {0},
and we say that Y is periodic otherwise.

I Lemma: A uniformly discrete point set Y ⊆ Rk is a
crystallographic point set if and only if its group of periods
is a lattice in Rk .



§3 Cut and project sets

Ys ⊂ E

Fπ

S

Wπ
E



Cut and project sets: definition

For k > d ≥ 1, start with the following data:
I Subspaces E and Fπ of Rk , dim(E) = d , E ∩ Fπ = {0},

and
Rk = E + Fπ,

I Natural projections π and π∗ from Rk onto E and Fπ,
I A subsetWπ ⊆ Fπ, called the window,
I A point s ∈ Rk .

The k to d cut and project set defined by this data is:

Ys = π{n + s : n ∈ Zk , π∗(n + s) ∈ Wπ}.



Cut and project sets: terminology

Ys ⊂ E

Fπ

S

Wπ
E

Rk : total space
E : physical space

Fπ : internal space
Wπ : window
S : strip

Ys = π{n + s : n ∈ Zk , π∗(n + s) ∈ Wπ} = π(S ∩ (Zk + s)).



Example: 2 to 1 cut and project set

I Consider the subspace E of R2 generated by the vector(
1√
5−1
2

)
,

I Fπ = E⊥, and Wπ is the image under π∗ of the vertical
interval

{(0, x2) : 2−
√

5 ≤ x2 < (3−
√

5)/2} ⊆ R2.



Fibonacci tiling

a b a a ab b

a a
a
b

b
a ab aba abaab



Example: 5 to 2 cut and project set

I Consider the subspace E of R5 generated by the columns
of the matrix 

1 0
cos(2π/5) sin(2π/5)
cos(4π/5) sin(4π/5)
cos(6π/5) sin(6π/5)
cos(8π/5) sin(8π/5)

 ,

I Fπ chosen appropriately, andWπ the canonical window,
which is the image under π∗ of the unit cube in R5.



Penrose tiling



What we will always assume

(i) Wπ is bounded and has nonempty interior, and the closure
ofWπ equals the closure of its interior

(ii) π|Zk is injective

(iii) s /∈ (Zk + ∂S) (Ys is nonsingular)



What we will usually assume

(iv) E + Zk is dense in Rk (E acts minimally on Tk )

(v) If p + Y = Y then p = 0 (Y is aperiodic)

(vi) E can be parametrized as

E = {(x1, . . . , xd ,L1(x), . . . ,Lk−d (x)) : x ∈ Rd}

A couple of remarks:
I Assumptions (i)+(iv) guarantee that Y is a Delone set.

I Neither the truth of condition (iv) nor that of (v) implies the
other.



One consequence

Assumptions (i)+(v) guarantee that Y is a Delone set:

I uniformly discrete: ∃r > 0 such that, for any y ∈ Y ,

Y ∩ Br (y) = {y},

I relatively dense: ∃R > 0 such that, for any x ∈ E ,

Y ∩ BR(x) 6= ∅.



Reference subspace

As a reference point, when allowing E to vary, we also make
use of the fixed (k − d)-dimensional subspace Fρ of Rk defined
by

Fρ = {(0, . . . ,0, y) : y ∈ Rk−d}

and we let ρ : Rk → E and ρ∗ : Rk → Fρ be the projections onto
E and Fρ with respect to the decomposition

Rk = E + Fρ.

We set
W = ρ∗(Wπ),

and we also refer to this set as the window.



Two special types of windows

I The cubical window,

W =

{
k∑

i=d+1

tiei : 0 ≤ ti < 1

}
.

I The canonical window,

W = ρ∗

({
k∑

i=1

tiei : 0 ≤ ti < 1

})
.

We say that Y is a cubical (resp. canonical) cut and project
set if it is nonsingular, minimal, and aperiodic, and ifW is a
cubical (resp. canonical) window.



§4 Crystallographic restriction and
rotational symmetry



Rotations and n-fold symmetry

I Identify the group of rotations of Rk with the special
orthogonal group SOk (R), the group of k × k orthogonal
matrices with determinant 1.

I A point set Y ∈ Rk has n-fold symmetry if there is an
element A ∈ SOk (R) of order n which stabilizes Y (i.e.
such that that AY = Y ).

I A rotation A ∈ SOk (R) is an irreducible rotation of order
n if An = I and if, for any 1 ≤ m < n the only element of Rk

which is fixed by Am is {0}. If a point set Y ⊆ Rk is
stabilized by an irreducible rotation of Rk of order n then
we say that Y has has irreducible n-fold symmetry.



Crystallographic restriction

I Lemma: If a lattice Λ ⊆ Rk has irreducible n-fold rotational
symmetry, then it must be the case that ϕ(n)|k .

I Crystallographic Restriction Theorem: A lattice in 2 or 3
dimensional Euclidean space can have n-fold symmetry
only if n = 1,2,3,4, or 6.



Planar cut and project sets with n-fold symmetry

I Lemma: Choose n ∈ N and suppose that ϕ(n)|k . Then
there is a lattice in Rk with irreducible n-fold symmetry.

I Theorem: For any n > 2, there is a k to 2 cut and project
set, with k = ϕ(n), with n-fold rotational symmetry.



Exercises from lecture notes

(3.5.2) Prove the Crystallographic Restriction Theorem above, but
for crystallographic point sets instead of lattices.

(3.5.1) Give an example of a lattice Λ ⊆ R6 with 15-fold rotational
symmetry.


