CONSTRUCTIBILITY AND GALOIS THEORY

1. Constructibility

Identify the plane with \mathbb{C} . The set $\mathcal{C} \subseteq \mathbb{C}$ of **constructible numbers** is the collection of numbers which can be realized, starting from 0 and 1, and applying a finite sequence of the following operations:

- (A1) Draw a line through two points which have already been constructed.
- (A2) Draw a circle with the center at a point that has already been constructed, and the circumference passing through another point that has been constructed.
- (A3) Add to the collection of constructed points an intersection point of two non-parallel lines, two circles, or a line and a circle.

An angle θ is a **constructible angle** if it is possible, starting from 0 and 1 and using a finite sequence of the above operations, to construct two lines whose intersection forms the angle θ . The collection of all constructible angles is denoted by Θ . The set C is completely characterized by the following result.

Theorem 1. The set C is a subfield of \mathbb{C} . A complex number α lies in C if and only if there exists an integer $n \geq 0$ and a sequence of fields $K_0, K_1, \ldots, K_n \subseteq \mathbb{C}$ satisfying:

- (i) $K_0 = \mathbb{Q}$ and $K_n = \mathbb{Q}(\alpha)$,
- (ii) $K_{i-1} \subseteq K_i$, for each $1 \le i \le n$, and
- (iii) $[K_i : K_{i-1}] = 2$ for each $1 \le i \le n$.

2. Galois Theory

If K is a field then an isomorphism from K to itself is called an **automorphism** of K. The collection of all automorphisms of K is denoted by $\operatorname{Aut}(K)$. An element $\sigma \in \operatorname{Aut}(K)$ fixes a subset $A \subseteq K$ if $\sigma a = a$ for every $a \in A$. If K/F is a field extension the the collection of automorphisms of K which fix F is denoted $\operatorname{Aut}(K/F)$.

The set $\operatorname{Aut}(K)$ forms a group under composition of maps, and $\operatorname{Aut}(K/F)$ forms a subgroup. For any subgroup $H \leq \operatorname{Aut}(K)$, the collection of elements fixed by H, denoted K_H , is a subfield of K, called the **fixed field** of H.

For any field K, the **prime subfield** of K is the smallest field contained in K. If char(K) = 0 then the prime subfield of K is isomorphic to \mathbb{Q} . If char(K) = p for some prime p then the prime subfield of K is isomorphic to \mathbb{F}_p . It is not difficult to show that every element of $\operatorname{Aut}(K)$ fixes the prime subfield of K.

Suppose that K/F is a field extension and that $\alpha \in K$ is algebraic over F. Let f_{α} be the minimal polynomial for α over F. Then it is an important fact (which you should know how to prove) that, for any $\sigma \in \operatorname{Aut}(K/F)$, we have that $f_{\alpha}(\sigma(\alpha)) = 0$. In other words, elements of $\operatorname{Aut}(K/F)$ always send α to another root of f_{α} .

In trying to understand the group $\operatorname{Aut}(K/F)$, it is often useful to combine the above observation with the following fact: If K/F is given by $K = F(\alpha_1, \ldots, \alpha_n)$, then every element $\sigma \in \operatorname{Aut}(K/F)$ is uniquely determined by the values of $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$. This shows, in particular, that if K/F is a finite extension then $|\operatorname{Aut}(K/F)| < \infty$. In fact, we can say more.

Theorem 2. If K/F is any finite extension then

 $|\operatorname{Aut}(K/F)| \le [K:F],$

with equality if and only if F is the fixed field of Aut(K/F).

A finite extension K/F is called a **Galois extension** if $|\operatorname{Aut}(K/F)|$ is equal to [K:F]. In this case, $\operatorname{Aut}(K/F)$ is also called the **Galois group** of K/F, and denoted by $\operatorname{Gal}(K/F)$. The theorem above gives one characterization of Galois extensions. Another characterization is the following.

Theorem 3. A finite extension K/F is Galois if and only if K is the splitting field of a separable polynomial with coefficients in F. Furthermore, if K/F is Galois then it is separable and every irreducible polynomial in F[x] which has a root in K, splits completely.

Now we present the main theorem of the course, which establishes an explicit bijection between subgroups of the Galois group of a Galois extension, and intermediate fields of the extension.

Theorem 4 (Fundamental Theorem of Galois Theory). If K/F is a Galois extension, with Galois group G, then:

- (i) There is a bijection between subgroups H of G and intermediate fields of the extension K/F, given by the map H → K_H. Furthermore, [K : K_H] = |H| (equivalently, [K_H : F] = |G : H|).
- (ii) For each $H \leq G$, the extension K_H/F is Galois if and only if H is normal in G. If K_H/F is Galois then $\operatorname{Gal}(K_H/F) \cong G/H$.