
TILING SPACES AND CUT AND PROJECT SETS

Instructions: Divide into groups of 2 or 3 people each, and choose one of the
following two topics to work through. The exercises under Topic I are designed to
help gain an understanding of the topology of tiling spaces, with a goal of making
precise the statement that ‘tiling spaces are Cantor set fiber bundles.’ The exercises
under Topic II introduce basic properties of cut and project sets, with an emphasis
on studying patterns and the dual problem of understanding orbits of points of a
related dynamical system on the internal space.

Topic I: Topology of tiling spaces

In this topic we will study metric spaces composed of tilings of Euclidean space.
Good references for the material in this section are [5, 6].

For all tilings under consideration we will assume throughout that:

(i) All of the tiles are poyhedra and, in any given tiling, only a finite number
of tile types are allowed, up to translation.

(ii) All tiles meet full face to full face. In other words, a face of one tile can not
partially overlap with a face of another.

For any two tilings T and T ′ of Rd, let ∂(T, T ′) be the infimum of the set of ε > 0
with the property that there are vectors x, x′ ∈ Rd with |x|, |x′| < ε/2, and such
that the tilings T +x and T ′+x′ agree on a ball of radius 1/ε centered at the origin.
Then the function d defined by

d(T, T ′) = min{1, ∂(T, T ′)}
defines a metric, called the tiling metric, on the collection of all tilings of Rd. A
tiling space is a collection of tilings of Rd which is closed under translation by
elements of Rd, and complete in the tiling metric. For any fixed tiling T of Rd, the
hull of T , denoted ΩT , is defined to be the smallest tiling space containing T . It
consists of the closure with respect to d of the collection of all translates of T .

(P1) Prove that the hull of any tiling is compact.

(P2) Describe the hulls of each the following tilings of R:

a a a a a a a a

a b a b a b a b

a a a a b a a a

a a a a b b b b

Next, suppose that X1, X2, . . . are topological spaces and that, for each i ≥ 1,
we are given a continuous map fi : Xi+1 → Xi. The inverse limit of the spaces
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Xi with respect to the maps fi is defined by

X∞ = lim
←
Xi =

{
(x1, x2, . . .) ∈

∏
i∈N

Xi : fi(xi+1) = xi for all i

}
.

The inverse limit is assumed to have the subspace topology inherited from the
product topology on

∏
Xi.

(P3) For each i ≥ 1 let Xi be a finite, discrete space with 2i elements. Find a
collection of maps {fi} as above, with respect to which the inverse limit
X∞ is homeomorphic to the ‘middle third’ Cantor set.

(P4) For each i let Xi = R/Z and let fi(x) = 2x mod 1. Prove that X∞ is locally
homeomorphic to the product of an interval and a Cantor set.

(P5) Let T be a tiling of R with two tiles a and b, determined by the substitution
rule a 7→ ab and b 7→ aab. Write ΩT as an inverse limit of ‘bouquets of two
circles,’ with connecting maps fi determined by the substitution.

(P6) Explain why the hull of any tiling is locally homeomorphic to a ‘Euclidean
ball with Cantor set fibers’.

(P7) Let T be a tiling of R2. Prove that there is a homeomorphism of R2 which
maps T to a tiling T ′, with the exact same pattern of tiles as T , and with
the property that all of the vertices of T ′ are elements of Q2.

(P8) Show that the homeomorphism in (P7) can be chosen so that it extends to
a homeomorphism from ΩT to ΩT ′ .

(P9) Using the result from (P8), prove that a tiling space constructed from a
tiling of R2 is a fiber bundle over a torus, with totally disconnected fibers.

The result from (P9) was proved in [6, Theorem 1], for tiling spaces of Euclidean
space of any dimension.

Topic II: Introduction to cut and project sets

In this topic we will study cut and project sets. Some references for the material
found here are [2, 3].

Let E (the physical space) be a d-dimensional subspace of Rk, and let Fπ (the
internal space) be a subspace of Rk complementary to E, so that E∩Fπ = {0} and
Rk = E+Fπ. Write π for the projection onto E with respect to this decomposition.
Choose a set Wπ ⊆ Fπ, and define S = Wπ + E. The set Wπ is referred to as the
window, and S as the strip. For the purposes of this worksheet, we will define the
cut and project set Y ⊆ E by

Y = π(S ∩ Zk).

In this situation we refer to Y as a k to d cut and project set. We also adopt
the conventional assumption that π|Zk is injective.

First we introduce some basic terminology related to cut and project sets. We
say that a subspace E of Rk is totally irrational if E + Zk is dense in Rk, and
in this case we also refer to Y as totally irrational. We say that Y is aperiodic if
Y + x 6= Y , for any nonzero x ∈ E.

As a point of reference, we make use of the fixed subspace Fρ = {0}×Rk−d ⊆ Rk,
and we assume throughout this worksheet, with little loss of generality, that Fρ is
complementary to E. Define ρ : Rk → E and ρ∗ : Rk → Fρ to be the projections
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onto E and Fρ with respect to the decomposition Rk = E+Fρ. We writeW = S∩Fρ,
and for convenience we also refer to this set as the window defining Y .

With the above assumptions, we can write E as the graph of a linear function
with respect to the standard basis vectors in Fρ. In other words,

E = {(x, L(x)) : x ∈ Rd},

where L : Rd → Rk−d is a linear function. For each 1 ≤ i ≤ k − d, we define the
linear form Li : Rd → R by

Li(x) = L(x)i =

d∑
j=1

αijxj ,

and we use the points {αij} ∈ Rd(k−d) to parametrize the choice of E.

(P1) Prove that E is totally irrational if and only if the collection of points

{L(n) : n ∈ Zd}+ Zk−d

is dense in Fρ/Zk−d.

(P2) Suppose thatW is the (half open) unit cube in Fρ. Prove that Y is aperiodic
if and only if the map L : Zd → Rk−d/Zk−d defined by

L(n) = L(n) + Zk−d

has trivial kernel.

(P3) Give an example of a cut and project set which is aperiodic but not totally
irrational, and an example which is totally irrational but not aperiodic.

For y ∈ Y , write ỹ for the point in Zk which satisfies π(ỹ) = y. Assume that
Ω ⊆ E is a bounded convex set which contains a neighborhood of 0 in E. Then, for
each r ≥ 0, define the patch of size r at y, by

P (y, r) := {y′ ∈ Y : ρ(ỹ′ − ỹ) ∈ rΩ}.

In other words, P (y, r) consists of the projections (under π) to Y of all points of S
whose first d coordinates are in a certain neighborhood of the first d coordinates of
ỹ. For y1, y2 ∈ Y , we say that P (y1, r) and P (y2, r) are equivalent if

P (y1, r) = P (y2, r) + y1 − y2.

This defines an equivalence relation on the collection of patches of size r, and we
denote the equivalence class of the patch of size r at y by P(y, r).

(P4) Prove that P1 = P (y1, r) and P2 = P (y2, r) are equivalent if and only if the
sets π−1(P1) ∩ Zk and π−1(P2) ∩ Zk are translates of each other.

(P5) Conclude from (P4) that P1 and P2 are equivalent if and only if the sets

ρ∗
(
S ∩

(
ỹi + (ρ−1(rΩ) ∩ Zk)

))
, i = 1, 2,

are translates by an element of Fρ.

Motivated by (P5), we consider the natural action of Zk on Fρ, given by

n.w = ρ∗(n) + w = w + (0, n2 − L(n1)),

for n = (n1, n2) ∈ Zk = Zd × Zk−d and w ∈ Fρ. For each r ≥ 0 we define the
r-singular points of W by

sing(r) =W ∩
(
(−ρ−1(rΩ) ∩ Zk).∂W

)
,
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and the r-regular points by

reg(r) =W \ sing(r).

(P6) Suppose that W is the unit cube in Fρ. Prove that, for every y ∈ Y and
r > 0, there is a unique connected component U of reg(r) with the property
that, for any y′ ∈ Y ,

P(y′, r) = P(y, r) if and only if ρ∗(ỹ′) ∈ U.
Hint: Use the result from (P4), and the fact that W is a fundamental
domain for Fρ/Zk−d.

(P7) Let W be the unit cube in Fρ. Prove that, for almost every choice of

{αij} ∈ Rd(k−d), with respect to Lebesgue measure and with reference to the
linear forms described above, the number of equivalence classes of patches
of size r in Y is bounded above and below by constants times rd(k−d). Hint:
Consider how the number of connected components of reg(r) depends on
the ranks of the kernels of the maps Li : Zd → R/Z defined by

Li(n) = Li(n) + Z, 1 ≤ i ≤ k − d.
(P8) For each integer τ with 2 ≤ τ ≤ 4, give an explicit example of a totally

irrational, aperiodic, 4 to 2 cut and project set where the number of patches
of size r is bounded above and below by constants times rτ .

Finally, we introduce an important notion which allows us to group together cut
and project sets which have essentially the same combinatorics of patches. Given
cut and project sets Y and Y ′ in the same subspace E, we will say that Y is
derivable from Y ′ if there exists a constant c > 0 such that all balls of radius c in
E intersect Y ′, and such that, for all sufficiently large r > 0, any patch of size r at
a point y ∈ Y uniquely determines the patch of size r− c at any point y′ ∈ Y ′ with
|y′ − y| ≤ c. If Y and Y ′ are both derivable from each other then we say that they
are mutually locally derivable (MLD).

(P9) Suppose that W is the unit cube in Fρ and that W ′ is the image under
ρ∗ of the unit cube in Rk (the window W ′ is often called the canonical
window). Let Y be a totally irrational cut and project set constructed
from the window W, and let Y ′ be a cut and project set constructed with
the same data, but with the window W ′. Prove that Y and Y ′ are MLD.

(P10) Let ζ = exp(2πi/5) and let Y be the cut and project set defined using the
canonical window and the two dimensional subspace E of R5 generated by
the vectors

(1,Re(ζ),Re(ζ2),Re(ζ3),Re(ζ4))

and
(0, Im(ζ), Im(ζ2), Im(ζ3), Im(ζ4)).

Parameterize E in terms of linear forms as above, and prove that Y is
aperiodic but not totally irrational.

(P11) Let Y be the cut and project set defined in (P10). Use the result of problem
(P9) to prove that the number of patches of size r is bounded above and
below by constants times r2.

Well known results of de Bruijn [1] and Robinson [4] show that the cut and
project set Y from problem (P10) is the image under a linear transformation of the
collection of vertices of a Penrose tiling, and in fact that all Penrose tilings can be
obtained in a similar way from cut and project sets.
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