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In all of what follows R will denote a commutative ring with identity
1. An R-module is an Abelian group (M, +) together with a binary
operation - : R x M — R called scalar multiplication (which we will
simply write as r - x = rx) satisfying the following properties, for all
r,s € Rand z,y € M:

(i) (rs)z =r(sx),

(i) 1z = =,
(iii) (r + s)z = rz + sx, and
(iv) r(x +y) =rz+ry.

You should notice that the requirements on M, together with proper-
ties (i)-(iv), are exactly the same in form as the requirements for being
a vector space, the only difference being that R is not required to be a
field. The trade-off for relaxing this requirement on R is that some of
the important properties which are true for vector spaces are no longer
true, in general, for R-modules. In particular, not every R-module has
an R-linearly independent generating set (i.e. a basis; definitions will
be given below). Therefore, although the basic algebraic structure in
this setting is similar to that encountered in a first course on linear
algebra, some care must be exercised in proceeding.

To familiarize ourselves with the definition, here a list of some com-
monly occurring examples of modules:

(1) As already mentioned, any vector space is a module over its
field of scalars.

(2) If n € N then the direct product of additive groups R" = R x
-+ X R (n-times) can be thought of as an R-module in a natural
way, with scalar multiplication defined componentwise. The
module R" is called the free module of rank n over R (more
justification for this terminology will be given below).

(3) Any Abelian group (G,+) can be thought of as a Z-module

in a natural way, with scalar multiplication defined by nx =
1



x+---+z (n-times), for all n € N and x € G, and extended in
the obvious way to all of Z x G.

(4) If S C R is a commutative ring with identity then (R, +) can
be thought of in a natural way as an S-module.

(5) Generalizing the previous example, if M is an R-module and
S C R is a subring of R (with identity) then M can also be
thought of in a natural way as an S-module.

(6) If M is an additive subgroup of R then M will be an R-module
(with scalar multiplication corresponding to multiplication in
R) if and only if for every r € R and = € M, we have rz € M.
Equivalently, M will be an R-module if and only if it is an ideal

of R.

(7) If I is an ideal of R then the additive group R/I is an R-module,
with scalar multiplication defined by

rz+1)=rz+1.

The fact that I is an ideal guarantees that this operation is well
defined, i.e. that it does not depend on the choice of represen-
tative for the coset z + I.

(8) Suppose that M is an R-module and that [ is an ideal of R. If
ar =0 for all a € [ and x € M then M can also be thought of
as an (R/I)-module, with scalar multiplication defined by

(r+1)x=raz.

Note that if r + 1 = s+ 1 in R/I then rx — sx = (r — s)x =0,
so rx = sx in M. This shows that scalar multiplication in this
example is well defined.

(9) Following from the previous example, let (G,+) be a finite
Abelian group with exponent n € N (recall that the exponent
of a finite group is the least common multiple of the orders of
all of its elements). We know from example (3) that G is a
Z-module. For every x € GG and for every element r in the ideal
nZ. C 7Z we have that rx = 0. Therefore, as described in the
previous example, G can be thought of in a natural way as a
(Z/nZ)-module.

Given an R-module M, a subset A C M is called a generating set for
M over R if, for every x € M, there exists an n € N, ry,...,r, € R,



and zq,...,x, € A with
T =712+ -+ Ty,

If M can be generated by a finite set A then we say that M is a finitely
generated R-module.

We say that a set A C M is R-linearly independent if whenever
rTy 4+ T, =0,

for some n € N, ri,...,r, € R, and for distinct elements z,...,x, €
A, it must be the case that ry = --- = r, = 0. Otherwise we say that
A is R-linearly dependent. A module M is called torsion free if
whenever rx = 0, for some r € R and x € M, it must be the case that
r=0orx=0.

If M contains an R-linearly independent, generating set A, then M is
called a free module, and A is called an R-basis (or simply a basis,
if there is no ambiguity) for M. Not every module is a free module. In
order to better appreciate this fact, consider the following examples.

(9) Suppose that R is an integral domain and that M is an R-
module which is not torsion free (e.g. a finite Abelian group G
viewed as a Z-module). Then there exist nonzero elements r €
R and z € M with ro = 0. If A C M is any generating set for
M then there exist n € N, rq,...,r, € R, and xq,...,2, € M
with

T =712+ -+ Ty

We can assume without loss of generality that none of the r;’s
are 0, and also (by grouping together like terms if necessary)
that the x;’s are distinct. Multiplying both sides of this equa-
tion by r gives

0=rx=(rr))z + -+ (rry)z,.

Since R is an integral domain, none of the coefficients rr; on
the right hand side are 0. Therefore the set A is R-linearly
dependent. This shows that there are no linearly independent
generating sets for M, so M is not a free module.

(10) If we drop the assumption that R is an integral domain in the
previous example, then we cannot reach the same conclusion.
To see this, take R = Z/67Z and let M be the additive group
of R, viewed as an R-module (as in example (4) above). Then



M is not torsion free, because rx = 0 with r = 2 and = = 3.
However, the set {1} is a basis for M, so M is a free module.

(11) As another example of a module which is not free, let M =
(Q,+) and let R = Z. Integer multiplies of a rational number
cannot increase the denominator, therefore any generating set
for Q must contain more than one element. However, if x; =
p1/q1 and xo = po/qe are distinct, non-zero elements of Q then

q1p2x1 + (—qo2p1)z2 = 0,

and ¢;p; and —gop; are non-zero integers. Therefore any gen-
erating set for Q over Z is linearly dependent, and Q is not a
free Z-module.

(12) In the previous example, if we had considered Q as a Q-module
then of course it would have been a free module, since {1} is
a Q-basis for Q. More generally, since a module over a field
is a vector space, and since any vector space has a basis, any
module over a field is a free module.

If an R-module M is a free module then any basis for M over R will
have the same cardinality (for completeness we point out that this is
not true in general for modules over non-commutative rings, which we
have not defined). The cardinality of any basis for a free module M
over R is called the rank of M over R. If M is a free R-module of rank
n € N then, by choosing a basis, we may identify M (isomorphically)
with R". This justifies calling R" the free module of rank n over R.

In the special case when R is a PID, we have several important struc-
ture results. The first result is a generalization of the non-torsion part
of the conclusion of the Fundamental Theorem for Finitely Generated
Abelian Groups.

Theorem 1. Suppose that R is a PID and that M is an R-module
which is finitely generated and torsion free, and which can be generated
by n elements and no fewer. Then

(i) M is a free module of rank n over R, and

(i1) any generating set consisting of n elements forms an R-basis

for M.

The second structural result is an example of what is sometimes
referred to as a ‘stacked basis theorem.’
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Theorem 2. Suppose that R is a PID, that N is a free R-module of
rank n € N, and that M C N is a sub-module of N. Then

(i) M is a free module of rank m <n, and

(ii) Thereis a basis yi, . .., Yn for N and non-zero elementsry, ..., r, €
R satisfying ri|ri 1 for each 1 < i < n, and for which m1y1, ..., "mYm
1s a basis for M.

This theorem is extremely useful in many problems, for example
when working with sub-lattices of finitely generated lattices in locally
compact Abelian groups, a situation which occurs often in both number
theory and dynamical systems.



