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1 Complexes and collaring

The Anderson-Putnam complex ΓAP of a tiling T is a CW complex obtained by taking one
copy of each tile type that appears in T and gluing them as follows. If tiles A and B share
an edge somewhere in T , identify the corresponding edges of A and B. A point in ΓAP is
essentially an instruction for placing a tile containing the origin. (Only “essentially” because
of the ambiguities when the origin lies on the boundary of two or more tiles.)

Consider the tiles in a tiling T . Call two tiles k-equivalent if the patches containing these
tiles and neighbors up to k-th order are translates of one another. An equivalence class is
called a k-times collared tile.

Let Γ
(k)
AP be the Anderson-Putnam complex built from k-collared tiles.

Theorem 1 (Gähler) If T is any tiling with FLC, then ΩT = lim←−(Γ(n), ρn) where ρn is the
forgetful map. More precisely, any two tiles that are n-equivalent are (n− 1)-equivalent, and
the map ρn sends each n-equivalence class to the corresponding (n− 1)-equivalence class.

Proof: A point in lim←−(Γ(n), ρn) is just a succession of consistent instructions for tiling bigger

and bigger balls around the origin, and so is tantamount to instructions for tiling all of Rd.

A substitution is a map σ : ΩT → ΩT that dilates each tiling by a factor λ around the
origin, then subdivides each tile according to a fixed pattern. E.g., in one dimension, we can
consider tiles a of length φ = (1 +

√
5)/2 and b of length 1, and replace each a with ab and

each b with a. A substitution also induces a map (also denoted σ) from Γ(n) to itself.
A cluster of tiles obtained by applying σ n times to a tile is called an n-supertile.
A substitution forces the border if there is an integer n such that every n-supertile of the

same type has exactly the same patterns of tiles adjacent to the supertile.

Theorem 2 (Anderson-Putnam) If a substitution forces the border, then ΩT = lim←−(Γ(0), σ).

A point in the inverse limit is a set of instructions for putting higher and higher order
supertiles around the origin. Because of border-forcing, this determines the tiling on all of
Rd.

Theorem 3 (Anderson-Putnam) If you rewrite a substitution tiling in terms of once-
collared tiles, it always forces the border.
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Theorem 4 (Still A-P) Every substitution tiling space can be written as an inverse limit
where all the approximants are the same and all the maps are the same. Use the uncollared
A-P complex if the substitution forces the border, and the collared A-P complex if it doesn’t.

2 Cohomology

Čech cohomology is a cohomology theory defined using open covers and refinements of open
covers. It applies to any topological space, and so is more general than simplicial or singular
(co)homology which only sees one path component at a time. The two key properties of
Čech cohomolgy are:

1. If Γ is a CW complex, then the Čech cohomology Ȟk(Γ) is isomorphic to every other
kind of cohomology (e.g. simplicial, singular, or cellular).

2. If Ω = lim←−(Γn, ρn), then Ȟk(Ω) = lim−→(Ȟk(Γn), ρ∗n).

Combining these two, we get that the Čech cohomology of an inverse limit of CW com-
plexes is the direct limit of the (ordinary!) cohomology of the approximants. In practice,
nobody every thinks about Čech cohomology from the definitions (which I’m not giving
you!). They always think about limits.

Another cohomology theory is based on a single tiling T rather than on the tiling space
ΩT . T gives a partition of Rd into vertices, edges, faces, etc. A k-cochain is a function from
the set of k-cells to a target group A, usually Z or R.

A function f : Rd → A is (strongly) pattern-equivariant (PE) if there is a radius R such
that the value of f(x) depends only on the pattern of T in an R-neighborhood of x. That
is, if T − x and T − y agree on BR(0), then f(x) = f(y).

We can similarly define PE differential forms and PE cochains. The exterior derivative
of a PE form is PE. The coboundary of a PE cochain is PE.

Theorem 5 (Kellendonk-Putnam) Consider the complex of PE differential forms. Let
Hk

PE,dR(T ) be the closed PE k-forms mod d of the PE (k − 1)-forms. (dR stands for de

Rham) Then Hk
PE,dR(T ) is isomorphic to Ȟk(ΩT ,R).

Theorem 6 (S) Let A be any Abelian group. The cohomology of the complex of A-valued
PE cochains on T is isomorphic to Ȟk(ΩT , A).

Proof: A cochain is PE if and only if it is the pullback of a cochain on a Gähler approximant.
So working with PE cochains is equivalent to working on Γn and then taking a limit as
n→∞. But that’s the same as the Čech cohomology of the inverse limit space.

When A = R, we can also speak of weakly PE functions, forms and cochains. These
are uniform limits of strongly PE cochains. For a strongly PE function, knowing the R-
neighborhood of x allows you to compute f(x) exactly. For a weakly PE function, it allows
you to approximate f(x), with the error going to zero as R→∞.

2



3 Shape deformations

We return to general tilings (not necessarily substitution tilings).
A tiling T ′ is locally derived from T if there is an R such that the ball of radius 1 around

every point x in T ′ is determined by the ball of radius R around x in T . This is very much
like pattern equivariance. If T − x and T − y agree on BR(0), then T ′ − x and T ′ − y agree
on B1(0). If T ′ is locally derived from T and T is locally derived from T ′, then T and T ′ are
mutually locally derivable, or MLD.

The shape of a polyhedral tile is determined by the displacements along its edges. If
two tiles share an edge, they must have the same displacement. So the shape is given by a
vector valued 1-cochain on ΓAP . This cochain is closed, and represents a class in H1(Γ,Rd).
Allowing collaring, and taking appropriate limits, gives the following theorem:

Theorem 7 (Clark-S) Shape changes to a tiling, modulo MLD, are parametrized (at least
infinitesimally) by Ȟ1(ΩT ,Rd).

Changing the shapes of tiles always gives a homeomorphic tiling space. Sometimes it gives
a space that is topologically conjugate. There is a subspace H1

an(ΩT ,R) of asymptotically
negligible classes such that

Shape changes that are topological conjugacies (aka shape conjugacies)

MLD
= Ȟ1(ΩT ,Rd).

If T is a substitution tiling with substitution σ, then σ maps ΩT to itself, so σ∗ maps
Ȟ1(ΩT ,Rd) to itself.

Theorem 8 (Clark-S) Ȟ1
an is the contracting subspace of Ȟ1 under the action of σ∗, i.e.

the span of all of the (generalized) eigenspaces with eigenvalue strictly smaller than 1.

Corollary 9 If σ is a Pisot substitution in 1 dimensional, then all changes to the length of
the tiles yield topologically conjugate tiling spaces, up to an overall rescaling.

Theorem 10 (Kellendonk) In any tiling space (not just substitution), a closed strongly
PE 1-cochain represents a class in H1

an if and only if its integral is weakly PE. (Which is if
and only if the integral is bounded)

Partially open question: For tilings that come from cut-and-project or local matching
rules, how can you compute H1

an?

4 Cut-and-project tilings

In a cut-and-project tilings, we have

1. A physical space Rd.

2. A locally compact Abelian group H. (For simplicity, imagine H = RN−d.)
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3. Projections π‖ and π⊥ from H × Rd to Rd and H, respectively.

4. A lattice Λ ⊂ H × Rd such that π‖ : Λ→ Rd is injective and π⊥(Λ) is dense in Hi.

5. A window W ⊂ H that is compact and the closure of its interior. When W is the
projection of a unit lattice cell, we call the setup canonical.

6. A strip S = W × Rd.

7. A parameter ξ ∈ H × Rd. ξ is called non-singular if π⊥(Λ + ξ) ∩ ∂W is empty. Since
Λ is countable, if ∂W has measure zero then Lebesgue almost-every ξ is non-singular.

If ξ is non-singular, this data gives us a set

π‖(S ∩ (ξ + Λ))

in Rd. There are several ways to convert from a point pattern to a tiling, either by using
Voronoi cells or by “connecting the dots” so that the points become vertices of tiles.

Our next task is understanding spaces of cut-and-project tilings as cut tori, computing
cohomology, and identifying the asymptotically negligible classes.
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