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1. Dimension on Rn

The main aim of these notes is to de�ne the Hausdor� dimension on Rn. This allows us to assign, to
every subset U of Rn, a real number, the �Hausdor� dimension� of U . It is worth pausing to consider
what properties we might want this notion of dimension to have. There are a number of subsets of
Rn for which everyone would agree on what their dimension should be. The linear subspaces of Rn
are the most obvious ones, and the dimension of these should be their dimension as a vector space.
For example, lines should have dimension 1 and planes dimension 2. Secondly we have curves and
surfaces, whose dimension should be 1 and 2 respectively since they �look like� lines and planes. This
is formalized by the notion of an m−dimensional manifold and curves and surfaces will be 1 and 2
dimensional sub-manifolds of Rn respectively. If these curves and planes are cut out by polynomial
equations then we can give them the Zariski topology and there is a notion of dimension here which
again gives the same answer. It would certainly be nice to de�ne a notion of dimension that agrees
with these existing (and intuitive) notions where both are de�ned. What is perhaps more important,
however, is that our notion of dimension has the properties that we might want. These could include:

• If V ⊆ U then dimV ≤ dimU "monotonicity"
• dim (V ∪ U) = max{dim(V ), dim(U)} "stability"
• dim (

⋃∞
i=1 Ui) = sup {dim (Ui)} "countable stability"

• If U is countable then dim(U) = 0
• If U is open then dim(U) = dim(Rn)
• Our dimension should transform nicely under e.g. translation, rotation (homeomorphism?
di�eomorphism?)

We might also ask that our dimension is easy to compute as one of the things we classically use
dimension for is as a quick test to see if two spaces can be related in some way.

2. Minkowski/Box-Counting Dimension

Perhaps the most intuitive notion of dimension for arbitrary bounded subsets of Rn is that of box-
counting dimension. Suppose we take a bounded set U ⊆ Rn and divide Rn into boxes of edge length
1
m and let Nm(U) be the number of boxes that intersect U . If U is a line segment then we expect that
Nm(U) will grow like m as m becomes large, whilst if U is a disk, say, we expect Nm(U) will grow
like m2 for m large. In general, for subsets U of Rn whose dimension we think should be d, we expect
that Nm(U) should grow like md for large m. This suggests that the quantity

lim
m→∞

log (Nm(U))

log (m)

might be a reasonable de�nition of the dimension of U .

More precisely, given a bounded subset φ 6= U ⊆ Rn, �x δ > 0 and divide Rn into boxes of edge
length δ (with a vertex of one box at the origin and sides directed along the co-ordinate axes, say)
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and de�ne Nδ(U) to be the number of boxes that intersect U . We then de�ne the upper and lower
box-counting dimensions of U to be the quantities

dimB(U) := lim sup
δ→0

log (Nδ(U))

− log(δ)

and

dimB(U) := lim inf
δ→0

log (Nδ(U))

− log(δ)

respectively. If these values agree, then we de�ne the Minkowski or box-counting dimension of
U , dimB(U), to be their common value.

Remark: The box-counting dimension, if it exists, need not be an integer.

Properties of, and problems with, box-counting dimension

Lemma 2.1: Let U, V ⊆ Rn and suppose that dimB(U) and dimB(V ) both exist. Then

(i) If V ⊆ U then dimB(V ) ≤ dimB(U)
(ii) dimB (U ∪ V ) = max {dimB(U),dimB(V )}

Proof. (i) follows from the fact that Nδ(V ) ≤ Nδ(U) for all δ > 0. (ii) follows from the inequality

max {Nδ(U), Nδ(V )} ≤ Nδ (U ∪ V ) ≤ 2 max {Nδ(U), Nδ(V )}

�

This shows that the box-counting dimension has a number of the properties we want. Moreover, it
can be shown that dimB(U) exists and is equal to m when U is a compact, smooth, m−dimensional
sub-manifold of Rn, so this notion is consistent with the usual notion of dimension. However, the
box-counting dimension has a serious drawback in that it fails to be countably stable. Indeed, let
U := Q ∩ [0, 1] ⊆ R. Then

Nδ(U) =

⌈
1

δ

⌉
and so dimB(U) exists and is equal to one. However, it is immediate that a �nite set has zero box-
counting dimension. This is clearly not what we want; not only does countable stability fail, but a set
which clearly �ought� to have dimension zero turns out to have dimension one. This limits the utility
of box-counting dimension (although it is easy to calculate) and forces us to look for new notions of
dimension on Rn.

3. Hausdorff Measure and Hausdorff Dimension on Rn

(Have in mind that this generalizes to arbitrary metric spaces)

Consider a line segment L in R2. Then with the Lebesgue measure, L has measure zero. However,
if one identi�es the line containing L with R and uses the Lebesgue measure here, L has �nite and
positive measure. Similarly, if we take a disc in R3 then this has zero measure with the Lebesgue
measure on R3, but non-zero and positive measure when we identify the plane containing the disc as
R2 and use the Lebesgue measure here. This suggests that the �correct� measure to use on a set that
�should have dimension d� is the Lebesgue measure on Rd, provided we can make sense of this. The
Hausdor� measures on Rn allow us to rigorously give meaning to this idea for all d ∈ R≥0 and all
subsets of Rn. The Hausdor� dimension of a set U ⊆ Rn is then the value of d such that the measure
corresponding to d is the �correct� one to measure U with. We now make this discussion precise.
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Recall that we de�ned the Lebesgue (outer) measure on R by:

Given U ⊆ R, let CU be the collection of (in�nite) sequences {(ai, bi)}∞i=1 such that U ⊆⋃∞
i=1(ai, bi). Then de�ne the Lebesgue outer measure of U by

λ? (U) := inf

{ ∞∑
i=1

(bi − ai) | {(ai, bi)}∞i=1 ∈ CU

}

The de�nition of the Hausdor� (outer) measure is similar. First, given φ 6= U ⊆ Rn, de�ne the
diameter of U to be

|U | := sup {|x− y| : x, y ∈ U}
Now let s ≥ 0 and δ > 0. We de�ne, for U ⊆ Rn,

Hsδ (U) := inf

{ ∞∑
i=0

|Ui|s : {Ui}∞i=1 is a δ−cover of U

}
where {Ui}∞i=1 is said to be a δ−cover of U if

(i) U ⊆
⋃∞
i=1 Ui

(ii) |Ui| ≤ δ for all i

Note that the Hs
δ (U) are non-decreasing as δ ↘ 0 as fewer covers become admissible. We de�ne the

s−dimensional Hausdor� (outer) measure of U to be

Hs(U) := limδ→0Hsδ(U) = sup
δ>0
Hsδ(U)

which may be (and often is as we shall see) 0 or ∞. It can be checked that this does indeed de�ne
an outer measure on Rn and, as with the Lebesgue measure, we can de�ne a σ−algebra, containing
B(Rn), on which Hs honestly is a measure. If s = n is a positive integer then (as is highly plausible) it
can be checked that Hn on Rn is just a constant multiple of λn, the n−dimensional Lebesgue measure.
However, it is the possibility of s not being an integer that leads to the de�nition of Hausdor� dimension.

Suppose t > s and δ < 1. Then clearly Htδ(U) ≤ Hsδ(U) whence Ht(U) ≤ Hs(U). In fact, if {Ui}∞i=1 is
a δ−cover of U then

∞∑
i=1

|Ui|t =

∞∑
i=1

|Ui|t−s+s ≤ δt−s
∞∑
i=1

|Ui|s

and so, in particular,
Htδ(U) ≤ δt−sHsδ(U)

If Hs(U) is �nite then we see that Ht(U) = 0 for all t > s and so there is a �critical value� of s such
that Hs(U) is in�nite for t < s and zero for t > s. From this, we de�ne the Hausdor� dimension of
U to be

dimH (U) := sup {s : Hs(U) =∞}

At s = dimH(U), we may have Hs(U) equal to 0 or ∞, or we may have 0 < Hs(U) < ∞, in which
case we say that U is an s−set.
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Properties of Hausdor� dimension

Proposition 3.1: The Hausdor� dimension on Rn is both monotonic and countably stable (hence
stable).

Proof. For monotonicity, if V ⊆ U ⊆ Rn then by virtue of being an outer measure we have

Hs(V ) ≤ Hs(U)

for all s ≥ 0, from which the result follows. Now suppose that {Um}∞m=1 is a sequence of subsets of
Rn and �x s ≥ 0. By monotonicity, we have dimH(Ui) ≤ dimH (

⋃∞
m=1 Um) for all i, whence

sup
m≥1

(dimH(Um)) ≤ dimH

( ∞⋃
m=1

Um

)
On the other hand, suppose t > supm≥1 (dimH(Um)). Then since Ht is countably sub-additive, we
have

Ht
( ∞⋃
m=1

Um

)
≤
∞∑
m=1

Ht(Um) = 0

whence

dimH

( ∞⋃
m=1

Um

)
≤ sup
m≥1

(dimH(Um))

�

Corollary 3.2: The Hausdor� dimension of any countable set is zero. Moreover, the Hausdor�
dimension of Rn is n and any (non-empty) open subset of Rn has Hausdor� dimension n as well.

Proof. It is immediate that the Hausdor� dimension of a single point is zero, whence the same is
true for countable sets by countable stability. Now let Um be the open ball of radius m inside Rn.
Then since Um has �nite and non-zero Lebesgue measure, it follows that 0 < Hn(Um) < ∞ whence
dimH(Um) = n. Countable stability gives the same result for Rn. Finally, given an arbitrary open set
φ 6= U ⊆ Rn , U has Hausdor� dimension at least n since it contains an open ball, and at most n since
it is contained in Rn. �

Remark: It can also be shown that any smooth m−dimensional sub-manifold of Rn has Hausdor�
dimension m.

The Hausdor� dimension also satis�es the following invariance property.

Lemma 3.3: Let U ⊆ Rn and let f : U → Rm be a bi-Lipschitz map, i.e. for all x, y ∈ U ,

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y|

for some 0 < c1 ≤ c2 <∞. Then dimH(U) = dimH (f(U)).

Proof. This follows easily from the de�nition of Hausdor� dimension. For the details see [1]. �
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Finally, we make our lives easier by showing that we can compute Hausdor� dimension by restricting
to covers consisting of open balls.

Lemma 3.4: Let U ⊆ Rn and de�ne Bsδ(U) identically to Hsδ(U), save with the added restriction that
the covers consist only of open balls, and Bs(U) similarly. Then we have

Hs(U) ≤ Bs(U) ≤ 4sHs(U)

In particular, Bs(U) is zero or in�nity if and only if Hs(U) is.

Proof. Given any δ−cover of U by arbitrary sets {Ui}∞i=1, de�ne Wi to be the open ball of radius 2|Ui|
and centre any point of Ui (which we can assume to be of non-zero diameter). Then {Wi}∞i=1 is a cover
of U by open balls and |Wi| = 4|Ui|. This yields

Hs4δ(U) ≤ Bs4δ(U) ≤ 4sHsδ(U)

whence the result. �

Remark: In the case of R, we can dispense with the 4s with a little more e�ort.

4. The Middle-Third Cantor Set

We will illustrate the concept of Hausdor� dimension by computing the Hausdor� dimension of the
middle third Cantor set, a set of independent interest.

De�nition 4.1: Let C0 := [0, 1]. For n ≥ 0, de�ne Cn inductively to be Cn−1 with the (open)
middle third of each constituent interval removed, so that C1 = [0, 13 ] ∪ [ 23 , 1] and C2 =

[0, 19 ] ∪ [ 29 ,
3
9 ] ∪ [ 69 ,

7
9 ] ∪ [ 89 , 1] etc. The picture (courtesy of [2]) is

Then de�ne the (middle-third) Cantor set to be

C :=

∞⋂
n=0

Cn

It is easy to see that if x ∈ [0, 1] is written in base 3 as

x =

∞∑
n=1

an3−n

for ai ∈ {0, 1, 2} then x is in C if and only if no an is equal to one. In particular, C is uncountable.
On the other hand, C has Lebesgue measure zero since the Lebesgue measure of Cn is

2n · 3−n → 0

as n→∞.
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Proposition 4.2: The Hausdor� dimension of the middle third Cantor set is s:= log(2)
log(3) . Moreover,

1

2
≤ Hs(C) ≤ 1

Proof. Fix n ≥ 0 and take as a cover of C the intervals comprising Cn. Denote these intervals by
U1, ..., U2n . Then for each t ≥ 0 we have

2n∑
i=1

|Ui|t = 2n3−nt =

(
2

3t

)n
For t > log(2)

log(3) this gives Hs(C) = 0 whence dimH(C) ≤ s whilst for t = s we get

Hs(C) ≤ 1

To �nd a lower bound on dimH(C) we use the remark after lemma 3.4 and restrict our covers to open
intervals. Since C is compact, we can restrict to �nite coverings. Fix δ < 1 and let {Ui} be a δ−covering
of C. For each Ui, let ki be the largest integer such that |Ui| < 3−ki . Note that ki ≥ −s log2 (|Ui|)− 1.
Then Ui intersects at most one interval in Cki , since they are separated by at least 3−ki . Moreover,
for any j ≥ ki, Ui intersects at most 2j−ki intervals of Cj . Since the cover is �nite, we can pick
j ≥ max {ki} whence this last statement is true for all i . However, of the 2j intervals comprising Cj ,
each one has its endpoints in C and so

⋃
i Ui must intersect each of these intervals. In particular, we

must have

2j ≤
∑
i

2j−ki

and so
1

2
≤
∑
i

2−ki−1 ≤
∑
i

|Ui|s

Taking the in�mum over all covers and the limit as δ → 0 shows that 1
2 ≤ H

s(C) which concludes the
proof. �

Remark: In fact, it can be shown that Hs(C) = 1.

5. A systematic Approach to Computing Hausdorff Dimension; Frostman's Lemma

As we saw in the previous section it can be hard to compute lower bounds on Hs(U), making it hard
to compute the Hausdor� dimension of U . Frostman's lemma gives a general approach to doing this.

De�nition 5.1: Let µ be a measure on Rn. That is, µ is an outer measure on Rn for which all Borel
sets are measurable. The support of µ is the smallest closed set X such that µ (Rn\X) = 0. We say
that µ is a measure on U ⊆ Rn if U contains the support of µ. If µ is a measure on a bounded set
U ⊆ Rn and 0 < µ (Rn) <∞ we call µ a mass distribution.

Lemma 5.2 (Frostman): Let U be a bounded subset of Rn and µ a mass distribution on U . Fix
s > 0 and suppose that there are positive constants c and δ such that

µ(V ) ≤ c|V |s

for all sets V with |V | ≤ δ. Then Hs(U) ≥ µ(U)/c > 0, whence dimH(U) ≥ s.
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Proof. If {Ui}∞i=1 is any δ−cover of U then

0 < µ(U) ≤ µ

( ∞⋃
i=1

Ui

)
≤
∞∑
i=1

µ(Ui) ≤ c
∞∑
i=1

|Ui|s

�

The following lemma serves to provide us with suitable mass distributions.

Lemma 5.3: Let E ⊆ Rn be a bounded Borel set and E0 consist of the set E. For k ≥ 1, let Ek be a
collection of disjoint Borel subsets of E such that each set U ∈ Ek is contained in precisely one set of
Ek−1 and itself contains a �nite number of sets in Ek+1. Suppose further that the maximum diameter
of sets in Ek tends to zero as k tends to in�nity. De�ne µ(E) = 1 and (inductively) if U1, ..., Um are
the sets in Ek contained in some set U ∈ Ek−1 , de�ne µ(Ui) in such a way that

∑m
i=1 µ(Ui) = µ(U).

For each k, let Ek be the union of all sets in Ek. De�ne µ (Rn\Ek) = 0.

Then µ (is well de�ned and) can be extended to a measure on Rn. Moreover, the support of µ is
contained in

⋂∞
k=1 Ēk.

Proof. Omitted. See [1]for details. �

Corollary 5.4: Let C be the middle third Cantor set and s := log(2)
log(3) . Then H

s(C) ≥ 1
2 .

Proof. By lemma 5.3 we can de�ne a mass distribution on C such that each interval comprising Cn
has measure 2−n. Let δ < 1 and k ≥ 0 be the largest integer such that δ < 3−k. If V is a set such
that |V | ≤ δ then V intersects at most one of the 2k intervals comprising Ck. In particular we have

µ(V ) ≤ 2−k ≤ 2|V |s

On the other hand, µ(C) = 1 whence Frostman's lemma gives the result. �
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