
Properties of topological groups and Haar

measure

We will go through the basics of topological groups as well as give the defi-
nition and the basic theorem regarding the Haar measure. Most of the material
comes from Chapter 1 of [1].

1 Topological Groups

A topological group is a group G equipped with a topology compatible with
the group operations, i.e.

(TG1) The function φ : G × G → G defined by φ(g, h) = gh,∀g, h ∈ G,
is continuous, where G×G has the product topology.

(TG2) The function φ : G → G defined by φ(g) = g−1,∀g ∈ G, is contin-
uous.

Examples of topological groups are:(R∗, .) with the euclidean topology and
GL(n,R) under matrix multiplication, with the euclidean topology on Rn×n.
A non-euclidean topological group is (Qp, ‖.‖p) and in fact every field equipped
with a norm can be turned into a topological group. By convention, whenever
we refer to a finite topological group, we will always assume that it has the
discrete topology.

Proposition 1.1. (Translation Invariance) For any topological group G,U ⊆
G and g ∈ G, the following are equivalent:
(i) U is open,
(ii) gU is open,
(iii) Ug is open.
(iv) U−1 is open.

Proof. We will only prove the first implication as the others are similar. Let
g ∈ G be fixed and U be an open subset of G. We will show that gU is open by
showing that for each of it’s elements x, one can find an open set Ux containing
x such that Ux ⊆ gU. Then the equality gU = ∪x∈gUUx will prove that gU is
open.
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Now let x ∈ gU. One can therefore find u ∈ U such that x = gu. Then the
continuous function φ defined in (TG1) satisfies φ(g, u) = x and since gU is an
open set which contains x, the definition of the product topology implies that one
can find open sets U1, U2 containing g and u respectively, such that U1U2 ⊆ gU.
We can then define Ux := U1U2 and notice that x = gu ∈ U1U2 = Ux and that
Ux = ∪h∈U2U1h is open.

Definition 1.2. (i)Let X be a topological space and U ⊆ X,x ∈ X. Then U is
called a neighborhood of x if x ∈ U◦.
(ii)A subset S of a group G is called symmetric if it satisfies S−1 = S.

The group theoretic structure of a topological group allows us to pick a basis
consisted from nicer sets than the general open sets and this is shown in the
first two sentences of the following Lemma. The rest of the sentences deal with
some topological properties of subgroups of a topological group.

Lemma 1.3. Let G be a topological group. Then
(i) For each neighborhood U of the identity e, one can find a neighborhood V of
e such that V V ⊆ U.
(ii) For each neighborhood U of the identity e, one can find a symmetric neigh-
borhood V of e such that V ⊆ U.
(iii) Let H be a subgroup of G. Then H is also a subgroup of G.
(iv)An open subgroup of G is also closed.

Proof. (i) The restriction φ′ of the function φ given in (TG1) to U◦×U◦, gives
rise to a continuous function whose inverse image of U◦ is a neighborhood of
(e, e). One can therefore find neighborhoods V1, V2 of the identity, such that
V1V2 = φ′(V1 × V2) ⊆ U◦. Letting V := V1 ∩ V2 yields the result.
(ii)The set V := U◦U◦ is symmetric and a neighborhood of the identity due to
Proposition 1.1(iv).
(iii) Assuming that g, h ∈ H, one can find nets gl, hl in H, converging to g and
h respectively.(TG2) implies that h−1l → h−1 and (TG1) implies that glh

−1
l →

gh−1, i.e. gh−1 ∈ H.
(iv)If H is a subgroup of G, then G is the disjoint union of cosets of H, one of
which can be taken to be H itself. One therefore gets

G = (∪g/∈HgH) ∪H.

By translation invariance, each coset gH is open, and therefore the union of such
sets is open as well. Then the previous equation shows that the compliment of
H in G is open, which proves the assertion.

As already suggested, the topology of topological groups has special charac-
teristics compared to any general topological space. The next proposition shows
another instance of this phenomenon:

Proposition 1.4. Let G be a topological group. Then the following are equiv-
alent:
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(i) G is a T1 topological space.
(ii) G is a T2 topological space.
(iii) {e} is closed.
(iv) {g} is closed for any g ∈ G.

Proof. Translation invariance proves the implication (iii)⇒(iv). Both implica-
tions (ii)⇒(iii) and (iv)⇒(i) are standard facts in the context of general topol-
ogy. To prove (i)⇒(ii) take any distinct group elements g, h. Now notice that
the definition of a T1 space implies the existence of a neighborhood U of the
identity, such that gh−1 /∈ U. By Lemma 2(i) and Lemma 2(ii), one can find
a symmetric neighborhood V of the identity such that V V ⊆ U. Then the
sets V g, V h are disjoint, otherwise v1g = v2h for some v1, v2 ∈ V and then
gh−1 = v−11 v2 ∈ V −1V = V V ⊆ U would be a contradiction. The two neigh-
borhoods separate the points g and h and therefore our claim is proved.

Definition 1.5. Let H be a subgroup of a topological group G. The quotient
topology on G/H is defined such that a set U ⊆ G/H is open if and only
if ρ−1(U) is open in the topology of G, where ρ : G → G/H is the canonical
projection map.

Notice that G/H is merely a topological space in general and not necessarily
a topological group. The reason is H might not be a normal subgroup of G so
G/H does not even have the structure of a group. However, as we shall later see,
whenever the condition of normality is satisfied, then G/H forms a topological
group.

Since the quotient topology is defined through a subgroup, one should expect
that topological properties of H ≤ G should imply various properties for G/H
of the same nature. In particular we have the next proposition:

Proposition 1.6. Let G be a topological group and H be a subgroup of G. Then
the following hold,
(i) Each translation map on G/H is a continuous function.
(ii) The canonical projection ρ : G→ G/H is an open map.
(iii) G/H is a T1 topological space if and only if H is a closed subgroup of G.
(iv) G/H is a discrete topological space if and only if H is an open subgroup
of G. If furthermore G is a compact topological group then G/H is a discrete
finite topological space if and only if H is open.

Proof. (i)This is an immediate corollary of the translation invariance of the
group G and the definition of the quotient topology.
(ii)Let V be an open subset of G. Then Definion 5 implies that the image ρ(V )
is open in G/H if and only if ρ−1(ρ(V )) is open in G. This set however is easily
seen to equal V H, which is the union of the translates V h as h ranges through
H and is therefore an open set.
(iii) The topological space G/H is T1 if and only if each of its singletons are
closed, which is a classical fact regarding T1 spaces. However, part (i) of this
proposition implies that this is holds if and only if the singleton {H} is closed.
By the definition of the quotient topology, this is equivalent to ρ−1({H}) = H
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being closed in G.
(iv) G/H is a discrete topological space if and only if each of its singletons
{gH},∀g ∈ G, is open. As in the proof of (iii) this is equivalent to H being
open in G. If G is a compact topological space, then it’s continuous image
ρ(G) = G/H is a compact topological space as well. Since any space is the
union of its singletons, the definition of compactness shows that discreteness
implies finitiness.

Remarks:(1) Proposition 1.6(ii) implies that G/H is a topological group
whenever H is a normal subgroup of G.
(2) One can show that every topological group projects by a continuous homeo-
morphism to a T2 topological group, and therefore the extra supposition that a
topological group is Hausdorff is not particularly demanding. To prove this, let
H := {e}, so that H is a subgroup of G. In fact it is a normal subgroup : for each
g ∈ G, the set g−1Hg is closed and contains the identity, hence by the definition
of the topological closure, one has H ⊆ g−1Hg, i.e. gHg−1 ⊆ H. Therefore the
topological space G/H is a topological group by the previous remark. Since H
is closed, Proposition 1.6(iii) implies that G/H is T1 which by Proposition 1.4
shows that G/H is a Hausdorff topological group.

The following proposition follows the same spirit of converting tpological
information about H ≤ G to topological information about G/H. Notice that
the proof procees uses net limits and therefore the Hausdorff condition is needed
to guarantee uniqueness of limits.

Proposition 1.7. Let G be a Hausdorff topological group. If H is a compact
subgroup, then the canonical projection ρ : G→ G/H is a closed map.

Proof. Let X ⊆ G be closed. Then ρ(X) is closed if and only if XH is closed
in G, as argued in the proof of Proposition 1.6(ii). We will prove this by using
nets : If z ∈ XH then it is the limit of a net xlhl, where xl ∈ X,hl ∈ H. The
compactness of H implies that one can find a subnet of hl which converges to
a limit h ∈ H and we henceforth focus on this subnet, identifying it with the
original net. By (TG1) and (TG2), one gets

xl = (xlhl)h
−1
l → zh−1,

and therefore zh−1 ∈ X, since X is closed. This implies that z = xh ∈ XH and
hence XH = XH.

Measures on topological groups will be introduced later, but their existence
can only be guaranteed in general only for the following kind of topological
groups:

Definition 1.8. A locally compact topological group is a Hausdorff topo-
logical group for which each point has a compact neighborhood.

Proposition 1.9. Let G be a Hausdorff topological group. Then any locally
compact subgroup is closed. In particular, each discrete subgroup of G is closed.

The proof can be found in [1].
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2 Haar Measure

In this section we briefly introduce the notion of Haar measure and give a few
examples.

Definition 2.1. A Radon measure is a Borel measure on a Hausdorff lo-
cally compact topological space which is finite on compact sets, inner and outer–
regular on all open sets.

Definition 2.2. A Haar measure on a locally compact topological group G is
a non–zero Radon measure which is right translation –invariant, i.e.

µ(gE) = µ(E)

for any Borel subset E of G and each g ∈ G.

One can similarly define left translation–invariant measures, or bi-invariant
translation –invariant measures, which is a combination of both.

The existence part of the following theorem was proved by Haar [2] and the
uniqueness part by Weil [3].

Proposition 2.3. Each locally compact topological group G admits a Haar mea-
sure, which is unique up to scalars.

A first example of Haar measures is by G = GL(n,R), equipped with matrix
multiplication and the euclidean topology, where the measure is defined as

µ(S) :=

∫
S

dX

|det(X)|
.

A second example is the group SL2(R) ' H × C, where the measure is given
through the hyperbolic metric.

The next example we will consider, is given by the locally compact additive
topological group Zp. By Proposition 2.3, we have an additive Haar measure
and we normalise it so as to have µ(Zp) = 1. Note that this can be done
because Zp is compact. For any m ≥ 1, one may use the p–adic expansion in Zp

to show that the subgroup pmZp has pm representatives, from which we infer
µ(pmZp) = p−m.

Now let us compute

Ip :=

∫
Zp

‖x‖p dµ.

On noticing that Wi := {x ∈ Zp : vp(x) = i} = piZp − pi+1Zp, we get

Ip =
∑
i≥0

p−iµ(Wi) =
∑
i≥0

(p−2i − p−2i−1) = p(p+ 1)−1.
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