
The p-adic numbers

There are quite a few reasons to be interested in the p-adic numbers Qp.
They are useful for solving diophantine equations, using tools like Hensel’s
lemma and the Hasse principle, which we won’t say anything about. They
are basic examples for things like valuations and profinite groups.

For us they are interesting because they form a topological group, a useful
and common one that isn’t just a variation of Euclidean space. There is
also a p-adic topology on the rationals which we will see is nothing like the
Euclidean topology, and we get to go through the process of completion.

The p-adic topology on Q
Given a prime p, we define a valuation on the rationals by

valp
a

b
pn = n,

where a and b are not divisible by p, and n is some integer. This is a valuation,
and makes the rationals (and the integers) a discrete valuation ring. We then
define the p-adic norm on Q by

|x|p = p− valp x,

for any non-zero x, and setting |0| = 0.
This is a norm: Clearly |x| = 0 if and only if x = 0, and multiplicativity

is also clear. The triangle inequality requires a bit of work. Let x = a
b

and
y = c

d
be any two rational numbers, in lowest terms. If either is zero, or their

sum is, then we are done. So assume not, then

valx+ y = val
ad+ bc

bd
= val(ad+ bc)− val b− val d

≥ min(val ad, val bc)− val b− val d

= min(val a− val b, val c− val d)

= min(valx, val y).
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and turning this upside down we get

|x+ y| = p− val(x+y) ≤ p−max(valx,val y) = max(|x|, |y|),

which is stronger than the triangle inequality, so we have a norm. This
inequality is called the ultrametric inequality, and norms that satisfy it are
called non-Archimedean.

The ultrametric inequality is actually an equality if |x| 6= |y|. If we assume
|y| > |x|, then

|x+ y ≤ max(|x|, |y|) = |y|,

and
|y| = |x+ y − x| ≤ max(|x+ y|, |x|) = |x+ y|,

since |x| is smaller than |y|. So |x + y| = |y|. This shouldn’t come as a
surprise: If x and y are divisible by different powers of p, their sum is divisible
by the lowest of the two powers of p, and no higher powers of p. If x and y
are divisible by the same power of p, then their sum might be divisible by a
larger power:

22 + 22 = 23.

Non-Archimedean norms do not always behave quite like Archimedean
norms. For instance, every point in an open ball is a centre of the ball. Let

D(a, r) = {|x− a| < r}

and choose some point b in D(a, r). Then D(b, r) = D(a, r), for if x ∈ D(b, r)
then

|x− a| = |x− b+ b− a| ≤ max(|x− b|, |b− a|) ≤ r,

so x ∈ D(a, r), and the other inclusion is shown by switching a and b.
Now that we have a norm on the rationals, we get a topology in the usual

way: We take all the open balls as a basis. The topology we get is called
the p-adic topology on the rationals. This is not the same as the Euclidean
topology. Small in the p-adic topology means divisible by a large power of p,
which is quite likely to take us very far, in Euclidean terms, from 0. We can
also look at the induced topology on the integers. The Euclidean topology on
Z is just the discrete topology (balls of radius smaller than 1 are singletons),
but one-point sets are not open in the p-adic topology on Z: The open balls
with centre 0 (and so the only balls containing 0) are pnZ for some natural n,
but any finite intersection is going to be just the smallest one.

Addition and taking negatives are continuous functions K2 → K and
K → K for any field K with topology arising from a norm, so Q is a
topological group, with the p-adic norm.
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The p-adic topologies for different primes are also all different. Clearly,
|pn|p is small for large n, but |pn|q = 1, if q is a prime not equal to p. We also
have the following useful theorem.

Theorem. Let | · |1 and | · |2 be two norms on some field k. Then the following
are equivalent:

1. The two norms induce the same topology on k,

2. the unit discs are equal, {|x|1 < 1} = {|x|2 < 1},

3. there exists a positive real α such that |x|α1 = |x|2 for all x in k.

If these conditions are satisfied, we say the norms are equivalent. For a
proof, see [Vaaler]. Note that a norm being equivalent to a p-adic norm just
means replacing 1

p
by 1

p

α
, that is we could have defined the same topology

using any number in (0, 1) as the base.
So we know several different norms on the rationals, and it can be shown

that there are no more.

Theorem. (Ostrowski) Every norm on Q is equivalent to the Euclidean norm,
a p-adic norm, or the trivial norm (|0| = 0, |x| = 1 for all other x).

For a proof, see [Koblitz, 1984].

The p-adics: Completion

One property the p-adic topology shares with the Euclidean is that neither
is complete. (Recall that a topological space is complete if every Cauchy
sequence converges, and {xn} is Cauchy if for any ε > 0 there exists N such
that n,m ≥ N implies |xm − xn| < ε.) To fix this in the Euclidean case,
analysis constructs the real numbers by inserting every missing limit. We will
do the same, using the exact same method, for the p-adic topology.

Begin by forming the ring of Cauchy sequences, call it C, with termwise
addition and multiplication. The set of sequences converging to 0, let’s call it
M , is an ideal. The sum of two sequences converging to 0 will clearly converge
to 0, and the product of a sequence converging to 0 with some other Cauchy
sequence will also, since Cauchy sequences are bounded. It is also easy to
see that M is maximal. For, take some ideal I between M and C, then I
contains a sequence a not converging to 0, which must have a last zero term
an. Add a sequence which is non-zero where a is zero and zero elsewhere, this
will have all zeros after n, so is in M , so in I. So we can assume a has no
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zero terms, so it can be inverted (and the inverse is Cauchy, as an does not
go to 0), so I is all of C, hence M is maximal. So the quotient will be a field,
and we define this to be the field of p-adic numbers,

Qp = C/M.

Another way of saying the same thing is that an, bn are equivalent if
|an− bn| → 0, and that Qp is the set of equivalence classes, and then checking
that the ring operations on representatives give well-defined operations on
equivalence classes. For multiplication, we check that if an and a′n are
equivalent, and bn and b′n are, then

|a′nb′n − anbn| = |a′n(b′n − bn) + bn(a′n − an)|
≤ |a′n||b′n − bn|+ |bn||a′n − an| → 0,

as both sequences are Cauchy and bounded, so the two pairs of representatives
give the same class when multiplied. We can do the same thing for addition.
Zero is the equivalence class of the all-zero sequence, and the definition of
negatives is obvious. The multiplicative identity is the sequence of all ones.
Inverses are a bit more tricky: we’d like to just invert every term, but we
need to guarantee that they are non-zero. We do the same thing as we did
when checking that M is maximal: if a sequence does not converge to zero, it
has a last zero term, and we can add on a sequence converging to zero that
makes those terms non-zero, this gives a different representative of the same
class, and it is easily inverted. So again we have a field.

The rationals are a subfield of the p-adic numbers, via the inclusion of
x ∈ Q as the constant sequence xn = x.

Now the whole point of this exercise was to make the rationals complete
with respect to | · |p. We can’t even think about completeness without a
topology, so our next step is to define a norm on Qp. Define

|{xn}|p = lim
n→∞

|xn|p,

where the second norm is the norm on Q. This limit exists: If an → 0, it is
just 0. If an does not converge to zero, then for some ε > 0, and any index
N there is some i ≥ N such that |ai| > ε. Since an is Cauchy we can also
choose N large enough to get |am − an| < ε for all m,n ≥ N . Then for any
n ≥ N , |an − ai| < ε and |an − ai| ≤ max(|an|, |ai|) > ε. (Remember that
the norm on Q is non-Archimedean. If we were completing with respect to
an Archimedean norm, as in the construction of the reals, we would need to
choose a slightly different approach here.) Now if |an| 6= |ai|, then the ≤ is
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an equality, which is impossible. So for all n ≥ N , |an| is stationary at |ai|,
so |an| → |ai|.

Note that the possible values the norm can take are still pn, for integer
n, the same values we had on Q. This contrasts with the reals, whose norm
takes all real values, while the (Euclidean) norm on the rationals takes only
rational values.

As for Q, Qp is a topological group simply because the topology comes
from a norm.

Note that this norm agrees with the p-adic norm on Q for rationals
embedded in Qp as constant sequences. We also see that Q is dense in Qp, as
any sequence xn of rationals is the limit of the constant sequences xn, so a
limit of rationals. Multiplicativity and the ultrametric inequality follow from
the Q-norm, since limits commute with sums, products and taking maximums.
So we really have made a non-Archimedean norm on the p-adic numbers.

Now we can show that Qp is complete. Take a Cauchy sequence {aj} of
p-adic numbers, i.e. of equivalence classes of Cauchy sequences of rationals,
and choose a representative {aji}i of each class. For each j, let Nj be a
number such that |ajm − ajn| < p−j for any m,n ≥ Nj. Then {ajNj

}j is the
limit of the sequence {aj}. For more detail, see [Baker, 2009].

So we have a complete field Qp, which has Q as a dense subfield, which is
what we were looking for. This is the unique, up to isometric isomorphism,
such field. (See [Vaaler])

Some properties of Qp

We’d like to not have to think about p-adic numbers as (classes of) Cauchy
sequences, and by analogy with the reals we might hope for something similar
to a decimal expansion. If we are lucky, we’ll then get fairly straightforward
arithmetic as well. We are lucky:

Define the p-adic integers to be the closed unit ball

Zp = {x ∈ Qp : |x| ≤ 1}.

Then we have

Theorem. Every p-adic integer x has exactly one representative {xn} such
that

1. 0 ≤ xn < pn for each n ≥ 1,

2. xn ≡ xn+1 mod pn for every n ≥ 1.

5



For a proof, see [Koblitz, 1984].
We can write out the xn in terms of powers of p:

xn = b0 + b1p+ . . .+ bn−1p
n−1,

with all the bi integers in [0, p− 1], and the congruence condition means that
xn+1 has the same b0, . . . , bn−1, so we get a sequence {bn} that we can think
of as a p-adic expansion of x with integer coefficients. In fact, the series∑

bip
i

really does converge to x.
(Convergence testing, by the way, is really easy with a non-Archimedean

norm: A series
∑
an converges if and only if an → 0.)

If we have an x ∈ Qp with norm greater than 1, then we can multiply by
a positive power pn of p to get an integer. If this then expands as

∑
i=0 bip

i

then x is

x =
b0
pn

+ . . .+
bn−1
p

+ bn + bn+1p+ . . . .

Note that the theorem said exactly one; there is no chance of getting an
equivalent of 1 = 0.999 . . ..

With these ‘decimal expansions’ of p-adics we can do arithmetic just as
we would with decimal representations of real numbers, with the one change
that we start from the left and work our way right.

Now for some topological properties of Qp. We have already shown it is
complete, and that Q is a dense subset. As a metric space, it is Hausdorff.

Like the rationals, but unlike the reals, the p-adics are totally disconnected.
If x and y are any two p-adic numbers, let d be the distance between them,
then the closed ball of radius d√

2
centred at x does not contain y, and the

complement of the ball is open. Any boundary points z would have distance
|x− z| = d√

2
from x, which is not a possible value of the norm, so the closed

ball is equal to the open ball of the same radius, so is open. Thus the ball
and its complement are a pair of disjoint open sets covering all of Qp. Since
we can do this to any two numbers, the connected components are singletons.

The p-adic numbers are locally compact, and the ring of integers Zp is
compact. Compactness of the integers implies that Qp is locally compact,
as it gives an open ball around 0 with compact closure, and we can then
translate this ball to any other point in Qp. To see that Zp is compact, recall
that a metric space is compact if it is complete and totally bounded. The
p-adic integers are a closed subset of the p-adic numbers, so they inherit the
completeness. To show that Zp is totally bounded, we need to show it can
be covered by finitely many ε-balls, for any ε > 0. We only need to consider
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p−n-balls, as the norm takes no other values. Now the p−n-ball around 0 is
pnZ, so other balls are cosets of this, and since Zp/pnZp = Z/pnZ (this is
easily seen from the p-adic expansion), we only need finitely many to cover
all of Zp.

So the p-adic integers are compact, totally disconnected and Hausdorff,
which is what is required to be a profinite group. Equivalently, a profinite
group is the inverse limit of an inverse system of discrete finite groups. In
our case, Zp is the limit of Z/pnZ as n→∞.

The p-adic numbers are the field of fractions of Zp.
The cardinality of Qp and Zp is that of R, by the usual diagonal argument.
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