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The paragraphs between stars were not covered during the actual lecture
(due to time constraints), but are nonetheless included for the interested
reader.
Even if it is not explicitly written, (G,+) is always assumed to be an abelian
group in what follows.

1 Characters on a group

1.1 The discrete case

For now, we do not endow G with a topology (or, if you wish, endow it with
the discrete topology, in which case every function from G to some other
topological space is continuous).
Denote by S1 the unit circle {z ∈ C : |z| = 1}. Recall that (S1,×) is
a multiplicative abelian group which is isomorphic to the additive group
(T = R/Z,+), the 1-dimensional torus.

Definition 1.1. A character on G is a group homomorphism χ : (G,+) →
(S1,×). In formulas, χ : G→ S1 satisfies:

∀(t, u) ∈ G2, χ(t− u) = χ(t)χ(u)−1.

The first two examples of discrete groups that come to mind are probably
the integers and finite cyclic groups. Let us therefore compute the characters
on these two groups to get a sense of what such objects look like.
• The case of G = Z

As the additive group (Z,+) is generated by 1, values of a character χ on Z
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are completely determined by χ(1). Precisely, for n ∈ Z, χ(n) = χ(1)n.
Now χ(1) ∈ S1, so we may find an α ∈ R with χ(1) = e2πiα meaning that
every character χ on Z is of the form

χ : n ∈ Z 7→ e2πinα ∈ S1.

Note that since the function x ∈ R 7→ e2πix ∈ S1 is 1-periodic, α is deter-
mined up to an integer. Therefore, we have established the following bijective
correspondence:

{characters on Z} ←→ R/Z = T.

• The case of G = Z/mZ
Let m ≥ 1 be a positive integer.
The characters on Z/mZ are exactly the characters χ on Z satisfying the
condition: ∀n ∈ Z, χ(mn) = 1. Hence we get χ(m) = 1.
Since a character χ on Z is of the form n 7→ e2πiαn for some α ∈ R, the fact

that χ(m) = 1 reads e2iαm = 1, meaning that we may find l ∈ Z with α =
l

m
.

Note that l is determined modulo m.
Therefore, we have established the following bijective correspondence:

{characters on Z/mZ} ←→ Z/mZ (←→ {m-th roots of unity}).

*One important example of characters in number theory is given by the
so-called Dirichlet characters, which are the characters on (Z/mZ)×. A big
advantage of these characters is their orthogonality relations, which yield the
characteristic function 1n≡l (mod m) when gcd(l,m) = 1.
More precisely,

1

ϕ(m)

∑
χ mod m

χ(n)χ(l) =

{
1 if n ≡ l (mod m)

0 otherwise
.

(Here and in the rest of this text z 7→ z̄ simply denotes complex conjugation
and ϕ is Euler’s totient function.)
They were notably used by Dirichlet in the proof of his theorem on primes
in arithmetic progressions.*

*Another example of a discrete group which might spring to mind is
(Q,+). However, the description of the characters on Q is somewhat more
involved than what we have seen so far. An excellent expository note is the
one by Keith Conrad, available at http://www.math.uconn.edu/~kconrad/

2

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/characterQ.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/characterQ.pdf


blurbs/gradnumthy/characterQ.pdf.
For the reader in a rush, the result is that there is a bijective correspondence
between characters on Q and AQ/Q, where AQ is the ring of (rational) adèles,
which you can read about in Matt’s lecture notes.*

1.2 The general case

In the case of R, say, the purely algebraic definition of a character we gave
above is not satisfactory. Considering it as a topological group, it is a good
idea to impose the topological condition of continuity of the characters.

Definition 1.2. A character on a topological abelian group is a continuous
group homomorphism χ : (G,+)→ (S1,×).

• The case of G = R

Claim 1.1. For every character χ on R, there exists a unique s ∈ R such
that χ : t ∈ R 7→ e2πist ∈ S1.

Proof. Let χ be a character on R. By definition, we get:

∀(t, u) ∈ R2, χ(t+ u) = χ(t)χ(u) (♣)

Now since χ is continuous we may write, for an arbitrary t0 > 0,

χ(t)

∫ t0

0

χ(u)du =

∫ t0

0

χ(t+ u)du =

∫ t+t0

t

χ(u)du.

Noting that χ(0) = 1 and thanks to the continuity of χ, it is easily seen that
for t0 small enough, the integral on the left-hand side is non-zero and of the
order of t0. (To be precise and give the details: we may find δ > 0 such that,

if |u| is less than δ, then |χ(u)− 1| is less than 1

2
, say.

Then write χ(u) as 1 + (χ(u)− 1) and use the triangle inequality to get∣∣∣∣∫ t0

0

χ(u)du

∣∣∣∣ ≥ t0 −
∣∣∣∣∫ t0

0

(χ(u)− 1)du

∣∣∣∣ ≥ 1

2
t0 > 0.)

We thus get

∀t ∈ R, χ(t) =

∫ t+t0
t

χ(u)du∫ t0
0
χ(u)du

.
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In particular, χ is continuously differentiable on R, which allows to differen-
tiate (♣) with respect to u, say. We get ∀(t, u) ∈ R2, χ′(t + u) = χ(t)χ′(u).
Let us plug in u = 0 to get ∀t ∈ R, χ′(t) = χ′(0)χ(t), which readily implies
that we may find z ∈ C such that ∀t ∈ R, χ(t) = ezt.
Finally, since χ has absolute value 1, we may find a unique s ∈ R such that
z = 2πis, hence the conclusion.

This result allows to find the characters on another group in a straight-
forward way, namely the (one-dimensional) torus T.
• The case of G = T

To get the characters on T from those on R, we proceed as we did to get the
characters on Z/mZ, m ≥ 1 from the characters on Z.
In general (exercise!), if H is a closed subgroup of a topological group G,
the characters on the quotient G/H are given by those characters on G with
∀h ∈ H, χ(h) = 1.
In our case, this yields:

Claim 1.2. For every character χ on T, there exists a unique integer n ∈ Z
such that χ : t ∈ T 7→ e2πint ∈ S1.

Proof. Let χ be a character on T. It may be identified with a character on
R which, by Claim 1.1, is of the form χ(t) = e2πist where s ∈ R is uniquely
determined. For χ to be a character on T, we need ∀k ∈ Z, e2πisk = 1, which
implies e2πis = 1, that is s ∈ Z.

*Martin’s lecture provides us with another interesting example of a (lo-
cally compact abelian) topological group, namely the p-adic numbers Qp. As
in the case of (the locally compact abelian group) R above, the characters on
Qp are in bijective correspondence with Qp itself. To see a proof of this fact,
read the aforementioned note by Keith Conrad (http://www.math.uconn.
edu/~kconrad/blurbs/gradnumthy/characterQ.pdf, Appendix A).*

*Similarly, yet another example of a (locally compact abelian) topological
group is given by the rational adèles AQ introduced in Matt’s lecture, and
the characters are yet again in bijective correspondence with AQ itself.*

1.3 The dual group of a topological group

Let G be a topological abelian group. If χ and χ̃ are two characters on G, we
get a third character by taking their product. Indeed, the map t 7→ χ(t)χ̃(t)
from G to S1 is a character, which we denote by χ · χ̃.
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In the case of Z, taking the product of two characters corresponds to
addition modulo 1, and we thus get the structure of a group on the set of
characters of Z: it is the dual group of Z, which is isomorphic (as a group)
to T. In the case of Z/mZ, taking the product of two characters corresponds
to addition modulo m, and we thus get the structure of a group on the set of
characters of Z/mZ: it is the dual group of Z/mZ, which is isomorphic (as
a group) to itself.

This motivates the following definition.

Definition 1.3. The dual group (sometimes called the Pontryagin dual) of
a group G is the topological group Ĝ given by the set of characters on G
endowed with the product law (χ, χ̃) 7→ χ · χ̃.

To get the structure of a topological group on Ĝ, we had better define a
topology on Ĝ. This is done in Sam’s lecture notes and it might then be a
good idea to go through our four cases and check (elementarily) that things
match up. Of course, those cases are instances of and hint at the general
theory developed in Sam’s notes, namely that of the Pontryagin duality (for
example, we saw that the dual group of the compact abelian group T is the
discrete group Z).

2 Fourier analysis on groups

2.1 Integration on groups

Thanks to the general theory of Lebesgue integration, the Haar measure on
a locally compact abelian group G (see Efthymios’s lecture notes) allows us
to construct the space L1(G) of integrable functions on such a group G.

2.2 Fourier transform and Fourier inversion

For a function f ∈ L1(G) where G is a locally compact abelian group, we
can define its Fourier transform as the function f̂ on Ĝ given by:

∀χ ∈ Ĝ, f̂(χ) =

∫
G

f(g)χ(g).

A particularly useful result is the ability to recover most functions given their
Fourier transform:
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Theorem 2.1 (Fourier inversion formula). If G is a locally compact abelian
group and µ is the Haar measure on G, then there exists a unique Haar
measure µ̂ on Ĝ such that for every function f ∈ L1(G) satisfying f̂ ∈ L1(Ĝ)
we have, for µ̂-almost every g ∈ G,

f(g) =

∫
Ĝ

f̂(χ)χ(g)dµ̂(χ).

For a detailed account and a proof of this result, see section 3.3 of the
book by Ramakrishnan and Valenza [2].

2.3 Familiar examples

If we apply our definition to the examples we discussed in the first section,
we get back to familiar ground.
Indeed:
in the case of Z, what we get are the familiar Fourier series;
in the case of Z/mZ, what we get is the familiar discrete Fourier transform,
for which the inversion formula is elementary;
in the case of R, what we get is the familiar Fourier transform;
in the case of T, what we get are the familiar Fourier coefficients.

3 Some applications

3.1 Uncertainty principle in finite abelian groups

Let G be a finite abelian group. If f : G→ C is a function on G, our definition
of its Fourier transform f̂ : Ĝ→ C becomes, after normalizing:

∀χ ∈ Ĝ, f̂(χ) =
1

|G|
∑
g∈G

f(g)χ(g).

Recall the definition of the support of f (respectively of f̂):
supp(f) = {x ∈ G | f(x) 6= 0} (respectively supp(f̂) = {χ ∈ Ĝ | f̂(χ) 6= 0}).
The following theorem was first proved in the case of a finite cyclic group by
Donoho and Stark in 1989 [1], then in full generality by Smith in 1990 [3].

Theorem 3.1 (Smith, 1990). If f 6= 0 is not identically zero, then

|supp(f)| · |supp(f̂)| ≥ |G|.
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3.2 Interlude: Parseval’s identity

While it is possible to prove the above theorem using the Fourier inversion
formula (exercise!), it provides us with a good opportunity to introduce Par-
seval’s identity and p-norms in the context of this section.

In this instance, Parseval’s identity takes the form:

1

|G|
∑
g∈G

|f(g)|2 =
∑
χ∈Ĝ

∣∣∣f̂(χ)
∣∣∣2 .

Thanks to the triangle inequality, we also get:

∀χ ∈ Ĝ,
∣∣∣f̂(χ)

∣∣∣ ≤ 1

|G|
∑
g∈G

|f(g)|.

Define, for functions on G, ‖f‖p =

(
1

|G|
∑
g∈G

|f(g)|p
)1/p

. Using the notation∥∥∥f̂∥∥∥
∞

on Ĝ as well, the two results above can be written as:

‖f‖22 =
∑
χ∈Ĝ

∣∣∣f̂(χ)
∣∣∣2 (1)

and ∥∥∥f̂∥∥∥
∞
≤ ‖f‖1. (2)

We are now ready for a proof of the theorem.
We may assume (why?) that ‖f‖2 = 1. Thanks to the Cauchy–Schwarz
inequality, we get the estimate:

‖f‖21 =
1

|G|

2

 ∑
g∈supp(f)

|f(g)|

2

≤ 1

|G|2
· |supp(f)| ·

∑
g∈supp(f)

|f(g)|2.

Note that
1

|G|
∑

g∈supp(f)

|f(g)|2 = ‖f‖22 = 1, so the above inequality is

‖f‖21 ≤
|supp(f)|
|G|

. (3)
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On the other hand, thanks to (1) and (2), we get:

1 =
∑
χ∈Ĝ

∣∣∣f̂(χ)
∣∣∣2 =

∑
χ∈supp(f̂)

∣∣∣f̂(χ)
∣∣∣2

≤ |supp(f̂)| · ‖f̂‖2∞

≤ |supp(f̂)| · ‖f‖21 ≤
|supp(f̂)| · |supp(f)|

|G|
,

where the last inequality follows from (3). Equivalently,

|supp(f̂)| · |supp(f)| ≥ |G|.

3.3 Improvement for cyclic groups of prime order

Theorem 3.1 was substantially improved by Tao in 2004 [4] in the special
case when G = Z/pZ is a cyclic group of prime order p :

Theorem 3.2 (Tao, 2004). If p ∈ P and f : Z/pZ → C is not identically
zero, then

|supp(f)|+ |supp(f̂)| ≥ p+ 1.

(How is it an improvement?)
Perhaps amazingly, the celebrated Cauchy–Davenport inequality is a fairly
straightforward corollary of this result:
Problem. Deduce the Cauchy–Davenport inequality

∀(A,B) ⊂ (Z/pZ)2, p ∈ P, |A+B| ≥ min{p, |A|+ |B| − 1}

from Tao’s theorem.
For more applications of character theory and Fourier analysis on groups,

see Chris’s lecture notes.
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