Pontryagin Duality

Sam Chow

November 15, 2012

For the reading group, $\ensuremath{\textit{Topological Groups}}$

School of Mathematics The University of Bristol We follow [1] closely.

Let G be an abelian topological group. The *Pontryagin dual* of G is the group of continuous homomorphisms $G \to S^1 \subset \mathbb{C}$, and we now describe its (compact-open) topology. A neighbourhood base of the trivial character is given by the set of all

$$W(K,V) = \{ \chi \in \hat{G} : \chi(K) \subseteq V \},\$$

for compact $K \subseteq G$ and $V \subseteq S^1$ a neighbourhood of 1. The set of all W(K, V) and their translates therefore forms a base for the topology on $\hat{G}^{,1}$

Proposition 1. Let $N = \{e^{2\pi i\theta} : -\frac{1}{3} < \theta < \frac{1}{3}\}$. Then

- (i) A group homomorphism $\chi : G \to S^1$ is continuous if and only if $\chi^{-1}(N)$ is a neighbourhood of the identity in G.
- (ii) The set of W(K, N), for compact $K \subseteq G$, is a neighbourhood base for the trivial character.
- (iii) If G is discrete then \hat{G} is compact.
- (iv) If G is compact then \hat{G} is discrete.
- (v) If G is locally compact then \hat{G} is locally compact.²
- *Proof.* (i) We don't need arbitarily small neighbourhoods V, for we can just take sufficiently large compact $K \subseteq G$. The technical details are in [1].
- (ii) Likewise.
- (iii) Assume that G is discrete. Then \hat{G} is the set of group homomorphisms $G \to S^1$. The topology of pointwise convergence on \hat{G} is inherited from

¹If we allow V to be any open subset of S^1 then the W(K, V) form a base for the topology. Hence this is the compact-open topology (in general these will only form a subbase).

 $^{^{2}}$ Recall that a topological group is *locally compact* if it is locally compact and Hausdorff as a topological space.

the product topology on $(S^1)^G = \{f : G \to S^1\}$. The projection maps are, for $g \in G$,

$$p_g: (S^1)^G \to S^1$$
$$f \mapsto f(g)$$

A base for the product topology is given by finite intersections of $p_g^{-1}(U)$, with $g \in G$ and U open in S^1 . As the compact subsets of G are precisely the finite ones (since G is compact), the compact-open topology on \hat{G} matches the topology of pointwise convergence.

By Tychonoff's theorem, $(S^1)^G$ is compact, so it remains to show that \hat{G} is a closed subset of $(S^1)^G$. Let $f: G \to S^1$ be a limit point of \hat{G} . Suppose for the sake of contradiction that f is not a homomorphism. Then there exist $g, h \in G$ such that $|f(gh) - f(g)f(h)| = 3\varepsilon$ for some $\varepsilon > 0$. Every neighbourhood of f contains a homomorphism, and in particular there exists a homomorphism $F: G \to S^1$ such that

$$|f(g) - F(g)| < \varepsilon, \tag{1}$$

$$|f(h) - F(h)| < \varepsilon, \text{ and}$$
(2)

$$|f(gh) - F(gh)| < \varepsilon. \tag{3}$$

(4)

As F(gh) = F(g)F(h) and |F(g)| = |f(h)| = 1, we now have

$$3\varepsilon = |f(gh) - f(g)f(h)| \tag{5}$$

$$\leq |f(gh) - F(gh)| + |F(g)F(h) - F(g)f(h)| + |F(g)f(h) - f(g)f(h)$$
(6)

$$< 3\varepsilon,$$
 (7)

contradiction. We conclude that \hat{G} is closed in $(S^1)^G$, and therefore compact.

- (iv) Assume that G is compact. Then the subset $W(G, N) = \{\chi_0\}$ is open in \hat{G} , where $\chi_0 : G \to S^1$ is the trivial character $g \mapsto 1$. Its translates are therefore also open, so \hat{G} is discrete.
- (v) See [1].

Theorem 2. Let G be a locally compact abelian group (LCA). Then the evaluation map

$$\begin{split} \alpha: G \to \hat{\hat{G}} \\ g \mapsto \alpha(g): \hat{G} \to S^1 \\ \chi \mapsto \chi(g) \end{split}$$

is an isomorphism of topological groups.

Our focus will be the proof of this theorem. We can put Haar measure on G since it's LCA. We'll take the theory of positive definite functions as a black box. Fourier inversion holds pointwise for continuous, L^1 , positive definite functions to $G \to \mathbb{C}$. Let $V^1(G)$ denote the set of such functions.

For $f \in L^1(G)$, define

$$L_z f: G \to S^1$$
$$t \mapsto f(z^{-1}t).$$

Lemma 3. The map α is injective.

Proof. Let $z \in G \setminus \{1\}$. Suppose, for the sake of contradiction, that $\alpha(z) = 1$. Then $\chi(z) = 1$ for all $\chi \in \hat{G}$. For $f \in L^1(G)$ and $\chi \in \hat{G}$, using the definition of Haar measure,

$$\widehat{L_z f}(\chi) = \int_G f(z^{-1}y)\overline{\chi}(y)dy = \int_G f(y)\overline{\chi(y)}dy = \widehat{f}(\chi).$$

Hence $\hat{f} = \widehat{L_z f}$ for all $f \in L^1(G)$. By Fourier inversion, $L_z f = f$ for all $f \in V^1(G)$.

As G is Hausdorff,³ there exists an open neighbourhood U of the identity such that $U \cap (z^{-1}U) = \emptyset$, and we may choose U small enough to lie within a compact neighbourhood of the identity. Using Urysohn's lemma, we can show that there exists a continuous, positive definite function $f \neq 0$ with support in U. Then $f \in L^1(G)$, being compactly supported, and so $f \in V^1(G)$. Now the supports of f and $L_z f$ are disjoint, contradicting $L_z f = f$.

 $^{^3\}mathrm{Recall}$ that this is part of the definition of a locally compact topological group.

For a compact neighbourhood \hat{K} of the identity character in \hat{G} and an open neighbourhood V of the identity in S^1 , let

$$W(\hat{K}, V) = \{ \psi \in \hat{\hat{G}} : \psi(\hat{K}) \subseteq V \}.$$

These subsets and their translates form a base for the topology of \hat{G} .

We use these to construct a base for the topology of G. Put

$$W_G(\tilde{K}, V) = W(\tilde{K}, V) \cap \alpha(G),$$

and regard these as subsets of G (since α is injective).

Proposition 4. The subsets $W_G(\hat{K}, V)$ and their translates form a base for the topology of G.

Proof. (sketch) Let U be an open neighbourhood of the identity $e \in G$. Use Urysohn's lemma to construct a continuous, positive definite function $g: G \to \mathbb{C}$ with support contained in U such that g(e) = 1. Use the Fourier transform and some measure theory to show that $g \simeq 1$ on $W_G(K, V)$ (for large enough \hat{K} and small enough V), thereby establishing that

$$W_G(K,V) \subseteq \operatorname{supp}(g) \subseteq U.$$
 (8)

Corollary 5. The map α is bicontinuous (open and continuous), so α is a homeomorphism onto its image.

Proof. By construction, 4

$$\alpha(W_G(\hat{K}, V)) = W(\hat{K}, V) \cap \alpha(G).$$
(9)

This shows that α is bicontinuous at the identity, and the result follows by translation.

Corollary 6. The image of α is closed in \hat{G} .

⁴Recall that the $W_G(\hat{K}, V)$ are considered as subsets of G.

Proof. Equivalently, we show that $\alpha(G)$ is closed in its closure. Since every open subgroup of a topological group is closed,⁵ it suffices to show that $\alpha(G)$ is open in its closure. This follows because $\alpha(G)$ is locally compact and dense in its closure.⁶

It remains to show that $\alpha(G)$ is dense in \hat{G} . Refer to the book if you're interested.

⁵Efthymios covered this: write the whole group as a disjoint union of cosets. Efthymios also showed us that the closure of a subgroup is a subgroup.

⁶Locally compact and dense in a Hausdorff space implies open.

References

 D. Ramakrishnan and R. J. Valenza, Fourier analysis on number fields (Graduate Texts in Mathematics, vol. 186, Springer, 1999), chapter 3.