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Overview

I We will look at several representative problems which
explore the question: What objects can you construct
using a particular collection of tools?

I This arises from very practical considerations, as well as
being a fun and interesting question in its own right. As we
will see, the answer, in some cases, turns out to rely
fundamentally on abstract ideas from higher mathematics.



§1 Constructibility using straightedge and compass



Straightedge and compass

I Straightedge: an unmarked ruler, allowing us to draw the
line passing through two points.

I Compass: a tool which allows us to draw a circle with one
point at the center and another point on the circumference.

Question: Starting with two points in the plane, what
lengths, angles, and shapes can we construct?

This question was studied extensively by the Greeks, as
early as 400-500 B.C.



Description of rules

Identify the plane with C. The subset C ⊆ C of constructible
numbers is the collection of numbers which can be realized,
starting from 0 and 1, and applying a finite sequence of the
following operations:

(A1) Draw a line through two points which have already been
constructed.

(A2) Draw a circle with the center at a point that has already
been constructed, and the circumference passing through
another point that has been constructed.

(A3) Add to the collection of constructed points an intersection
point of two non-parallel lines, two circles, or a line and a
circle.



Ex. 1: Equilateral triangle

0 1



Ex. 2: Regular hexagon



Ex. 3: Perpendicular bisector



Ex. 4: Angle bisector



Ex. 5: Regular pentagon
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Questions the Greeks could not answer

Using only the rules above, is it possible to:

I Trisect an arbitrary angle?
I Double the cube?
I Square the circle?
I Construct a regular septagon or nonagon?

All of these problems were eventually proved to be impossible,
but not until the 1800’s (Wantzel, 1837 + Lindemann, 1882).



§2 Solvability of polynomial equations by radicals



Roots of polynomials
I Suppose that

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0

is a polynomial with rational coefficients, i.e. ai ∈ Q for
each 0 ≤ i ≤ n.

I The roots of f are the numbers x ∈ C which satisfy the
equation f (x) = 0.

Question: Is there a formula for the roots of f , which
involves only its coefficients and a finite sequence of
operations from the list:

+,−,×,÷, m
√
.

If so, we say that f is solvable by radicals.



Linear and quadratic polynomials

I If f (x) = a1x + a0, with a1 6= 0, then there is one root, the
number x = −a0/a1.

I If f (x) = a2x2 + a1x + a0, with a2 6= 0, then the roots are
given by the quadratic equation,

x =
−a1 ±

√
a2

1 − 4a2a0

2a2
.

I These formulas have been known for over 4000 years.



Cubic and quartic polynomials

I Let f (x) = a3x3 + a2x2 + a1x + a0, with a3 6= 0. There is a
formula for the roots of f , analogous to the quadratic
equation. For example, one such root is:

I The general cubic equation was solved in the 1500’s AD by
del Fiorro and Tartaglia, and published by Cardano.

I The solution of the cubic equation also led to a solution to
the general quartic (Ferrari, 1540).



Quintic and higher degree

I Some polynomials of higher degree are solvable by
radicals, for example

f (x) = x5 − 2

and
f (x) = x9 + 3x6 + 4x3 + 1.

I By the Fundamental Theorem of Algebra, all polynomials f
with complex coefficients have a root in C.

I However, for every n ≥ 5, there are polynomials of degree
n which are not solvable by radicals (Abel, 1823).



§3 Algebraic framework: Fields and Galois theory
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Constructible numbers form a field

Returning to C, the collection of complex numbers constructible
using straightedge and compass, it is not difficult to show that:

I If z ∈ C, z 6= 0, then −z and z−1 are also in C.
I If z,w ∈ C, z 6= 0, then z + w and zw are in C.

This implies that C is a field, an algebraic object where we can
perform arithmetic (multiplication and addition) in a way
analogous to Q.

Examples of fields that you may have encountered:

Q, R, C, and Z/pZ for p prime.

Examples of algebraic objects which are not fields:

Z and Z/nZ for n composite.



More examples of fields
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Field extensions as vector spaces

I If F and K are fields with F ⊆ K , then K has a natural
structure as a vector space over F .

I If F ⊆ K ⊆ L are all fields, then it is not difficult to show that

dimF (L) = dimK (L) · dimF (K ).

I This implies, for example, that any field L which is a finite
dimensional vector space over Q and which contains the
field Q(

3
√

2) must satisfy

3 | dimQ(L).



Structure of the field C

I Every number α ∈ C is constructed by a finite sequence of
steps that involves intersecting only circles and lines (i.e.
with other circles or lines).

I Finding the intersection point of two circles, lines, or a
circle and a line requires us, at most, to perform addition,
subtraction, multiplication, and division, and possibly to
take a square root, using a collection of numbers that we
already know how to construct.

I It follows that if α ∈ C, then the smallest field K containing
both Q and α is a vector space over Q of dimension 2n, for
some integer n ≥ 0.



Consequences of this structure

I It is impossible to double the cube, i.e. to construct the
number 3

√
2, since dimQ(Q(

3
√

2)) = 3.
I It is impossible to trisect an angle of 60◦. If we could, then

we could construct the number α = cos 20◦, but this
number is a root of the degree 3 irreducible polynomial

f (x) = 8x3 − 6x − 1.

I It is impossible to construct a regular nonagon, or
septagon, for similar reasons.

I It is impossible to square the circle, i.e. to construct the
number

√
π, because then we could construct the number

π. However, π is transcendental (Lindemann, 1882).



The field of solvable numbers

The collection of roots of polynomials which are solvable by
radicals also forms a field, with a particular, but more
complicated, structure.

I A root of a polynomial is solvable by radicals if and only if
we can build it up, starting from Q and performing a
sequence of operations from the list +,−,×,÷, and m

√.
I The first four of these operations take place in whatever

field we are in, while the operation m
√ may require us to

move to a field extension of a particular form.
I Therefore we can translate the problem of determining

whether or not a number α is solvable by radicals into one
about understanding the intermediate fields between Q
and Q(α).



Intermediate fields and groups of symmetries
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Fundamental Theorem of Galois Theory

I The Fundamental Theorem of Galois Theory allows us to
understand the collection of intermediate fields of special
kinds of field extensions, by understanding the groups of
symmetries (field automorphisms) of the extensions.

I The subgroups of the group of symmetries are in explicit
one to one correspondence with intermediate fields of the
extension.

I If a certain subgroup structure is not present (i.e. the group
of symmetries is not a solvable group) then numbers in the
corresponding field extension are not solvable.

I Polynomials of degree n ‘typically’ correspond to field
extensions with groups Sn. For n ≥ 5 these groups are not
solvable.



§4 Origami



Paper folding

Finally, instead of using our straightedge and compass to draw
lines and circles on an infinite sheet of paper, let us consider
what numbers we could construct if we were only allowed to
fold the paper, according to standard ‘rules of origami’. It turns
out that we can still:

I Construct the line through any two points (easy).
I Construct the perpendicular bisector of a line segment and

the angle bisector of an angle.
I Construct regular triangles, quadrilaterals, pentagons,

hexagons, and octagons.
In fact, with an intuitive and reasonable set of rules, we can
construct all numbers that are constructible using straightedge
and compass. In addition, we have...



Solutions to some of the previously impossible problems

Origami allows us to:
I Trisect an arbitrary angle.
I Construct 3

√
2.

I Construct regular septagons and nonagons.



Trisecting an arbitrary angle



The neusis construction and the power to rule

The extra power in origami comes from the ability to take points
that we have already constructed and match them up with other
objects that we have constructed, before folding the crease.
This is similar to the power of having a ruler, as opposed to just
a straightedge.

This extra technique allows us to perform the neusis
construction, a construction known to the ancient Greeks, which
can be used to find a common tangent line of two parabolas.



Constructing tangents to a parabola

P

L



A tangent to two parabolas

y = mx + b

m = − 3
√

2

y2 = 4x

x2 = 2y
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