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1. Field extensions

If K and F are fields with F ⊆ K then we say that K is a field
extension of F (or just an extension of F ). We write K/F to refer
to this field extension. If K is an extension of F then it is naturally an
F -vector space, and we define the degree of K/F by

[K : F ] = dimF (K).

If [K : F ] < ∞ then we say that K/F is a finite extension. The
following basic result should be familiar from linear algebra.

Theorem 1 (Tower Law). Suppose F,K, and L are fields satisfying
the inclusions F ⊆ K ⊆ L. Then we have that:

(i) [L : F ] = [L : K] · [K : F ].
(ii) If A is an F -basis for K/F and if B is a K-basis for L/K then

the set
C = {αβ : α ∈ A, β ∈ B}

is an F -basis for L/F .

Suppose K/F and L/K are field extensions with [K : F ] = m and
[L : K] = n, and that {α1, . . . αm} is an F -basis for K, and {β1, . . . , βn}
is a K-basis for L. Then it follows from the Tower Law that [L : F ] =
mn and that the set

{αiβj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
is an F -basis for L/K. In other words, every element of L can be
written uniquely in the form

m∑
i=1

n∑
j=1

aijαiβj,

with coefficients aij taken from F .

The characteristic of F , denoted char(F ), is the smallest positive
integer n with the property that na = 0 for all a ∈ F , if such an in-
teger exists. If no such integer exists then char(F ) = 0. We leave it
to the reader to check that if char(F ) is not 0 then it must be a prime
number. Every field F contains a unique smallest subfield, called the
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prime subfield of F . The prime subfield of F is isomorphic either to
Q (if char(F ) = 0) or to Fp, for some prime p (if char(F ) = p).

If K/F is an extension and A ⊆ K, then the field obtained from
F by adjoining A, denoted by F (A), is the smallest subfield of K
containing F∪A. If there exists an element α ∈ K such that K = F (α)
then we say that K/F is a simple extension. If K/F is a field ex-
tension and if α, β ∈ K, then F (α, β) = F (α)(β).

Next, suppose that F1, . . . , F` are subfields of a common field K. The
composite extension (or compositum) of F1, . . . , F` is defined to
be the smallest subfield of K which contains all of them. It is denoted
by F1F2 · · ·F`. The following result is useful in many problems.

Lemma 1. Suppose that F1 and F2 are finite extensions of a com-
mon base field F . Then there is an extension K of F which contains
F1 and F2. Furthermore, if {α1, . . . , αn} is an F -basis for F1/F and
{β1, . . . , βm} is an F -basis for F2/F then:

(i) F1F2 = F (α1, . . . , αn, β1, . . . , βm).
(ii) F1F2 is the F -linear span of the set

{αiβj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
(iii) [F1F2 : F ] ≤ [F1 : F ] · [F2 : F ].

Although this result is similar in spirit to the Tower Law, be careful
to understand the difference in setup: the result in the lemma is about
composite extensions, not towers of extensions. In particular, note that
part (iii) of the lemma here only provides an inequality. Nevertheless,
this can be useful in practice.

2. Algebraic extensions

In many problems we will want to move from some field F to an
extension field K in which a given polynomial in F [x] has a root. For
this the following result is foundational.

Theorem 2 (Kronecker’s Theorem). If F is a field and f ∈ F [x] is
a nonconstant polynomial, then there is an extension of F in which f
has a root.

Corollary 1. If F is a field and f ∈ F [x] is a nonconstant polynomial,
then there in an extension of F in which f splits completely (i.e.
factors as a product of linear polynomials).
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If F is a field and f ∈ F [x] is a nonconstant polynomial then there
is a smallest extension field of F in which f splits completely, and it is
unique up to isomorphism. This field is called the splitting field of
f over F. If K is the splitting field of a degree n polynomial in F [x]
then [K : F ] ≤ n!.

The following result, which can be viewed as a more detailed version
of Kronecker’s Theorem, is also crucial to understanding field exten-
sions obtained by adjoining roots of polynomials.

Theorem 3. Suppose that F is a field and that f ∈ F [x] is an irre-
ducible polynomial. Let deg(f) = n and let α be a root of f in some
extension of F . Then we have that:

(i) The field F (α) is field isomorphic to F [x]/(f(x)), and an ex-
plicit isomorphism is given by the map α 7→ x+ (f(x)).

(ii) [F (α) : F ] = n, and the set {1, α, . . . , αn−1} is an F -basis for
F (α) as an F -vector space. In other words, every element of
F (α) has a unique representation of the form

a0 + a1α + a2α
2 + · · ·+ an−1α

n−1,

with coefficients a0, . . . , an−1 taken from F .

If K/F is a field extension then an element α ∈ K is algebraic
over F if it is the root of a polynomial in F [x]. In this case then the
minimal polynomial for α over F, denoted by fα, is defined to be
the unique monic irreducible polynomial in F [x] which has α as a root.
Note that the definition of fα depends not only on α, but also on the
field F . It follows from the above theorem that, if α is algebraic over
F , then

[F (α) : F ] = deg(fα).

The field K is said to be algebraic over F (and K/F is called an alge-
braic extension) if every element of K is algebraic over F . Note that
if [K : F ] < ∞ then K/F is an algebraic extension, but the converse
of this statement is not true in general.

A field K is called algebraically closed if every polynomial in K[x]
splits completely in K. It is a non-trivial fact that every field F has an
algebraic extension which is also algebraically closed, and that up to
isomorphism there is only one such extension of F . This algebraically
closed algebraic extension of F is called the algebraic closure of F ,
and it is denoted by F .
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A polynomial f ∈ F [x] is separable if it has no repeated roots in
F . Otherwise f is inseparable. An extension K/F is separable if
every α ∈ K is the root of a separable poynomial in F [x]. Otherwise
the extension is inseparable. It is clear any separable extension must
be algebraic. The following result is extremely useful.

Theorem 4 (Primitive Element Theorem). If K/F is a separable ex-
tension and [K : F ] <∞ then K/F is a simple extension.

From this it is not difficult to deduce the following result.

Corollary 2. Suppose that K/F is a field extension with [K : F ] <∞.
If char(F ) = 0 or if |F | <∞ then K/F is a simple extension.

Finally, if K and L are fields an embedding of K into L is an
injective field homomorphism from K into L. We have the following
result about embeddings of separable field extensions into algebraic
closures.

Theorem 5. Suppose that K/F is a separable extension with [K : F ] =
n, write K = F (α), and let α1, . . . , αn be the distinct roots of fα (the
conjugates of α) in F . Then there are exactly n distinct embeddings
of K into F which fix F , and they are determined uniquely by the maps
α 7→ αi, for 1 ≤ i ≤ n.

3. Finite fields

There are several basic but important facts about finite fields which
you should know. We state these as theorems below, and we also in-
clude proofs that we hope will help to reinforce some of the information
presented thus far.

Theorem 6. If F is a field and |F | < ∞ then |F | = pn, for some
prime number p and for some n ∈ N.

Proof. If F is a finite field then its prime subfield must be Fp, for some
prime p. Then, if [F : Fp] = n, we have that |F | = |Fp|n = pn. �

Theorem 7. For every prime p and for every n ∈ N, there is exactly
one finite field of order pn, up to isomorphism.

Proof. First we show that, for each prime p and n ∈ N, there is a field
of order pn. Let K be the splitting field over Fp of the polynomial

f(x) = xp
n − x ∈ Fp[x].

Note that [K : F ] ≤ (pn)!, which implies that K is finite. Since f ′(x) =
−1 in Fp[x], the polynomial f is separable (any repeated root of f in Fp
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would also be a root f ′). Therefore all the roots of f in K are distinct,
showing that |K| ≥ pn. On the other hand, if α and β are roots of f
then we have that

(αβ)p
n

= αp
n

βp
n

= αβ,

and (using the Binomial Theorem and the fact that we are working in
characteristic p)

(α + β)p
n

= αp
n

+ βp
n

= α + β.

This shows that αβ and α+ β are also roots of F . Since the collection
of roots of f is a finite subset of the finite field K which is closed
under addition and multiplication, it is itself a field. Therefore, by
the definition of the splitting field, it must equal K. This shows that
|K| = pn.

Next, suppose that L is any field of order pn. Then L contains Fp as
its prime subfield. By Fermat’s Theorem, for any α ∈ L, we have that

α|L| = αp
n

= α.

This shows that L is the splitting field over Fp of the polynomial f
defined above. It follows from the uniqueness of the splitting field that
L is isomorphic to the field K constructed above. �

Next we would like establish that the multiplicative group of any
finite field is a cyclic group. In fact the following slightly more general
result is true.

Theorem 8. Suppose that F is any field. Any finite subgroup of the
multiplicative group F× is cyclic.

Proof. Let G be a finite subgroup of F×. By the Fundamental Theorem
of Finite Abelian Groups, there are integers k ∈ N and n1, n2, . . . , nk ≥
2 satisfying ni|ni+1 for each 1 ≤ i < k and

G ∼= Zn1 × · · · × Znk
,

where each Zni
is a cyclic group of order ni. Let f ∈ F [x] be the

polynomial
f(x) = xnk − 1.

The order of every element of G divides nk, so every element of G is
a root of f . Since F is a field, the polynomial f can have at most
deg(f) = nk roots in F . This forces k = 1, which means that G is a
cyclic group. �

As a corollary of the previous theorem we immediately obtain the
following result.
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Corollary 3. If F is a finite field then the multiplicative group F× =
F \ {0} is a cyclic group.

4. Galois Theory

If K is a field then an isomorphism from K to itself is called an
automorphism of K. The collection of all automorphisms of K is
denoted by Aut(K). An element σ ∈ Aut(K) fixes a subset A ⊆ K if
σa = a for every a ∈ A. If K/F is a field extension the the collection
of automorphisms of K which fix F is denoted Aut(K/F ).

The set Aut(K) forms a group under composition of maps, and
Aut(K/F ) forms a subgroup. For any subgroup H 6 Aut(K), the
collection of elements fixed by H, denoted KH , is a subfield of K,
called the fixed field of H.

Suppose that K/F is a field extension and that α ∈ K is algebraic
over F . Let fα be the minimal polynomial for α over F . Then it is
an important fact (which you should know how to prove) that, for any
σ ∈ Aut(K/F ), we have that fα(σ(α)) = 0. This shows that elements
of Aut(K/F ) permute the roots of fα.

In trying to understand the group Aut(K/F ), it is often useful to
combine the above observation with the following fact: If K/F is given
by K = F (α1, . . . , αn), then every element σ ∈ Aut(K/F ) is uniquely
determined by the values of σ(α1), . . . , σ(αn). This shows, in particular,
that if K/F is a finite extension then |Aut(K/F )| < ∞. In fact, we
can say more.

Theorem 9. If K/F is any finite extension then

|Aut(K/F )| ≤ [K : F ],

with equality if and only if F is the fixed field of Aut(K/F ).

A finite extension K/F is called a Galois extension if |Aut(K/F )|
is equal to [K : F ]. In this case, Aut(K/F ) is also called the Galois
group of K/F , and denoted by Gal(K/F ). The theorem above gives
one characterization of Galois extensions. Another characterization is
the following.

Theorem 10. A finite extension K/F is Galois if and only if K is
the splitting field of a separable polynomial with coefficients in F . Fur-
thermore, if K/F is Galois then it is separable and every irreducible
polynomial in F [x] which has a root in K, splits completely.
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If K/F is a Galois extension then for any α ∈ K the elements σ(α),
with σ ∈ Gal(K/F ), are called the Galois conjugates (or just con-
jugates) of α. One important fact is that, if K = F (α) then all of the
roots of fα are Galois conjugates. This is also often phrased as saying
that the Galois group acts transitively on the roots of fα.

We conclude with one of the most beautiful theorems in this subject,
which provides an explicit bijection between subgroups of the Galois
group of a Galois extension, and intermediate fields of the extension.

Theorem 11 (Fundamental Theorem of Galois Theory). If K/F
is a Galois extension, with Galois group G, then:

(i) There is a bijection between subgroups H of G and intermediate
fields of the extension K/F , given by the map H 7→ KH . Fur-
thermore, [K : KH ] = |H| (equivalently, [KH : F ] = |G : H|).

(ii) For each H 6 G, the extension KH/F is Galois if and only if H
is normal in G. If KH/F is Galois then Gal(KH/F ) ∼= G/H.


