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In all of what follows R will denote a commutative ring with identity
1. An R-module is an Abelian group (M,+) together with a binary
operation · : R×M → R called scalar multiplication (which we will
simply write as r · x = rx) satisfying the following properties, for all
r, s ∈ R and x, y ∈ M :

(i) (rs)x = r(sx),

(ii) 1x = x,

(iii) (r + s)x = rx+ sx, and

(iv) r(x+ y) = rx+ ry.

You should notice that the requirements on M , together with proper-
ties (i)-(iv), are exactly the same in form as the requirements for being
a vector space, the only difference being that R is not required to be a
field. The trade-off for relaxing this requirement on R is that some of
the important properties which are true for vector spaces are no longer
true, in general, for R-modules. In particular, not every R-module has
an R-linearly independent generating set (i.e. a basis; definitions will
be given below). Therefore, although the basic algebraic structure in
this setting is similar to that encountered in a first course on linear
algebra, some care must be exercised in proceeding.

To familiarize ourselves with the definition, here a list of some com-
monly occurring examples of modules:

(1) As already mentioned, any vector space is a module over its
field of scalars. Conversely, any module over a field is a vector
space over the field.

(2) Any Abelian group (G,+) can be thought of as a Z-module
in a natural way, with scalar multiplication defined by nx =
x+ · · ·+ x (n-times), for all n ∈ N and x ∈ G, and extended in
the obvious way to all of Z×G.

(3) If n ∈ N then the direct product of additive groups Rn = R ×
· · ·×R (n-times) can be thought of as an R-module in a natural
way, with scalar multiplication defined componentwise. The
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module Rn is called the free module of rank n over R (more
justification for this terminology will be given below).

(4) If S ⊆ R is a commutative ring with identity then (R,+) can
be thought of in a natural way as an S-module.

(5) Generalizing the previous example, if M is an R-module and
S ⊆ R is a subring of R (with identity) then M can also be
thought of in a natural way as an S-module.

(6) If M is an additive subgroup of R then M will be an R-module
(with scalar multiplication corresponding to multiplication in
R) if and only if for every r ∈ R and x ∈ M , we have rx ∈ M .
Equivalently, M will be an R-module if and only if it is an ideal
of R.

(7) Generalizing the previous example, if M is an R-module and if
N is an additive subgroup of M , then N will be a sub-module
of M if and only if rn ∈ N , for all r ∈ R and n ∈ N .

(8) Suppose F is a field and let R = F [x]. If V is an F -vector space
and T : V → T is a linear transformation, then we can define a
binary operation · : R×V → V as follows. Suppose that f ∈ R
and write

f(x) =
n∑

i=0

aix
i, ai ∈ F,

then for any v ∈ V define

f · v =
n∑

i=0

aiT
i(v),

where T i = T ◦ · · · ◦T (i-times). It is not difficult to check that
this turns V into an R-module.

(9) Now suppose that V is any R = F [x] module, where F is a
field. Then, since V is an F module, it is a vector space over
F . Define a map T : V → V by

T (v) = x · v.
By the R-module properties, we have for any a ∈ F and v, w ∈
V that

T (av + w) = aT (v) + T (w),

therefore T is an F -linear transformation. It is also clear from
the R-module properties that V is precisely the R-module ob-
tained from V and T , using the construction in the previous
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example. This example shows that when F is a field, F [x]-
modules correspond in a natural way to vector spaces V over
F , together with a choice of linear transformation T : V → V .

(10) Continuing the previous two examples, suppose that F is a
field, that V is an R = F [x]-module, and that T is the linear
transformation of V corresponding to scalar multiplication by
x ∈ R. If W ⊆ V is any R-sub-module then, first of all, it must
be an F -vector space, so it must be a subspace of V . In addition,
by the result of Example 7 it must satisfy the condition that
T (w) ∈ W , for all w ∈ W . It is not difficult to check that these
conditions are necessary and sufficient. In other words, the
R-sub-modules of V in this case are precisely the T -invariant
subspaces of V (i.e. subspaces W ⊆ V which satisfy T (W ) ⊆
W ).

(11) If I is an ideal of R then the additive group R/I is an R-module,
with scalar multiplication defined by

r(x+ I) = rx+ I.

The fact that I is an ideal guarantees that this operation is well
defined, i.e. that it does not depend on the choice of represen-
tative for the coset x+ I.

(12) Suppose that M is an R-module and that I is an ideal of R. If
ax = 0 for all a ∈ I and x ∈ M then M can also be thought of
as an (R/I)-module, with scalar multiplication defined by

(r + I)x = rx.

Note that if r + I = s+ I in R/I then rx− sx = (r − s)x = 0,
so rx = sx in M . This shows that scalar multiplication in this
example is well defined.

(13) Following from the previous example, let (G,+) be a finite
Abelian group with exponent n ∈ N (recall that the exponent
of a finite group is the least common multiple of the orders of
all of its elements). We know from example (2) that G is a
Z-module. For every x ∈ G and for every element r in the ideal
nZ ⊆ Z we have that rx = 0. Therefore, as described in the
previous example, G can be thought of in a natural way as a
(Z/nZ)-module.

If M is an R-module and if N ⊆ M is a sub-module then the quotient
module is the R-module (M/N,+) with scalar multiplication defined
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by

r(x+N) = rx+N.

Note that the fact that N is a sub-module guarantees that this is well
defined. It is not sufficient in general just to assume that N is an ad-
ditive subgroup of M .

If M and N are R-modules then a map φ : M → N is called an
R-module homomorphism if

φ(x+ y) = φ(x) + φ(y) and φ(rx) = rφ(x),

for all x, y ∈ M and r ∈ R. Analogues of the group and ring isomor-
phism theorems hold for R-modules. For example, the 1st isomorphism
theorem for R-modules states that, given an R-module homomorphism
as above, we have that ker(φ) is a sub-module of M , that φ(M) is a
sub-module of N , and that

M/ker(φ) ∼= φ(M).

Given an R-module M , a subset A ⊆ M is called a generating set
for M over R if, for every x ∈ M , there exists an n ∈ N, r1, . . . , rn ∈ R,
and x1, . . . , xn ∈ A with

x = r1x1 + · · ·+ rnxn.

IfM can be generated by a finite set A then we say thatM is a finitely
generated R-module.

We say that a set A ⊆ M is R-linearly independent if whenever

r1x1 + · · ·+ rnxn = 0,

for some n ∈ N, r1, . . . , rn ∈ R, and for distinct elements x1, . . . , xn ∈
A, it must be the case that r1 = · · · = rn = 0. Otherwise we say that
A is R-linearly dependent. A module M is called torsion free if
whenever rx = 0, for some r ∈ R and x ∈ M , it must be the case that
r = 0 or x = 0.

IfM contains an R-linearly independent, generating setA, thenM is
called a free module, and A is called an R-basis (or simply a basis,
if there is no ambiguity) for M . Not every module is a free module. In
order to better appreciate this fact, consider the following examples.

(14) Suppose that R is an integral domain and that M is an R-
module which is not torsion free (e.g. a finite Abelian group G
viewed as a Z-module). Then there exist nonzero elements r ∈
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R and x ∈ M with rx = 0. If A ⊆ M is any generating set for
M then there exist n ∈ N, r1, . . . , rn ∈ R, and x1, . . . , xn ∈ M
with

x = r1x1 + · · ·+ rnxn.

We can assume without loss of generality that none of the ri’s
are 0, and also (by grouping together like terms if necessary)
that the xi’s are distinct. Multiplying both sides of this equa-
tion by r gives

0 = rx = (rr1)x1 + · · ·+ (rrn)xn.

Since R is an integral domain, none of the coefficients rri on
the right hand side are 0. Therefore the set A is R-linearly
dependent. This shows that there are no linearly independent
generating sets for M , so M is not a free module.

(15) If we drop the assumption that R is an integral domain in the
previous example, then we cannot reach the same conclusion.
To see this, take R = Z/6Z and let M be the additive group
of R, viewed as an R-module (as in example (4) above). Then
M is not torsion free, because rx = 0 with r = 2 and x = 3.
However, the set {1} is a basis for M , so M is a free module.

(16) As another example of a module which is not free, let M =
(Q,+) and let R = Z. Integer multiplies of a rational number
cannot increase the denominator, therefore any generating set
for Q must contain more than one element. However, if x1 =
p1/q1 and x2 = p2/q2 are distinct, non-zero elements of Q then

q1p2x1 + (−q2p1)x2 = 0,

and q1p2 and −q2p1 are non-zero integers. Therefore any gen-
erating set for Q over Z is linearly dependent, and Q is not a
free Z-module.

(17) In the previous example, if we had considered Q as a Q-module
then of course it would have been a free module, since {1} is
a Q-basis for Q. More generally, since a module over a field
is a vector space, and since any vector space has a basis, any
module over a field is a free module.

If an R-module M is a free module then any basis for M over R will
have the same cardinality (for completeness we point out that this is
not true in general for modules over non-commutative rings, which we
have not defined). The cardinality of any basis for a free module M
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over R is called the rank of M over R. If M is a free R-module of rank
n ∈ N then, by choosing a basis, we may identify M (isomorphically)
with Rn. This justifies calling Rn the free module of rank n over R.
In general, even if M is an R-module which is not free, we still define
the rank of M to be the largest cardinality of a subset of M which is
R-linearly independent.

In the special case when R is a PID, we have several very useful
structure results.

Theorem 1 (Stacked bases theorem). Suppose that R is a PID, that
M is a free R-module of rank n ∈ N, and that N ⊆ M is a sub-module.
Then

(i) N is a free module of rank m ≤ n, and

(ii) There are a basis x1, . . . , xn for M and non-zero elements r1,
. . . , rn ∈ R satisfying ri|ri+1 for each 1 ≤ i < n, and for which
r1x1, . . . , rmxm is a basis for N .

This theorem is extremely useful in many problems, for example
when working with sub-lattices of finitely generated lattices in locally
compact Abelian groups, a situation which occurs often in both num-
ber theory and dynamical systems. It can also be used to derive the
following fundamental result.

Theorem 2 (Structure theorem for finitely generated modules over
a PID). Suppose that R is a PID and that M is a finitely generated
R-module. Then

(i) (Invariant factor decomposition) There are integers r,m ≥ 0
and non-zero, non-unit elements a1, . . . , am ∈ R satisfying

M ∼= Rr ×R/(a1)× · · · ×R/(am),

and a1|a1| . . . |am, and this decomposition is unique.

(ii) (Elementary divisor decomposition) There are integers r, k ≥ 0,
prime elements p1, . . . , pk ∈ R (not necessarily distinct), and
positive integers a1, . . . , ak, for which

M ∼= Rr ×R/(pa11 )× · · · ×R/(pakk ),

and this decomposition is unique up to the arrangement of the
factors.
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In the special case of this theorem when R = Z, we recover from The-
orem 2 the Fundamental theorem for finitely generated Abelian groups.

In the special case when R = F [x], where F is a field, the Invariant
factor decomposition in Theorem 2 gives us the rational canonical form
of the associated linear transformation T (see Examples 8-10 above).
The Elementary divisor decomposition gives us the Jordan canonical
form of the linear transformation, provided the field F contains all of
its eigenvalues.


