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In all of what follows R will denote a commutative ring with identity
1. An R-module is an Abelian group (M, +) together with a binary
operation - : R x M — R called scalar multiplication (which we will
simply write as r - © = rx) satisfying the following properties, for all
r,s € Rand z,y € M:

(i) (rs)z = r(sz),

(ii) 1z = =z,
(iii) (r + s)x = rz + sx, and
(iv) r(z +y) = re+ry.

You should notice that the requirements on M, together with proper-
ties (i)-(iv), are exactly the same in form as the requirements for being
a vector space, the only difference being that R is not required to be a
field. The trade-off for relaxing this requirement on R is that some of
the important properties which are true for vector spaces are no longer
true, in general, for R-modules. In particular, not every R-module has
an R-linearly independent generating set (i.e. a basis; definitions will
be given below). Therefore, although the basic algebraic structure in
this setting is similar to that encountered in a first course on linear
algebra, some care must be exercised in proceeding.

To familiarize ourselves with the definition, here a list of some com-
monly occurring examples of modules:

(1) As already mentioned, any vector space is a module over its
field of scalars. Conversely, any module over a field is a vector
space over the field.

(2) Any Abelian group (G,+) can be thought of as a Z-module
in a natural way, with scalar multiplication defined by nx =
T+ -+ (n-times), for all n € N and x € G, and extended in
the obvious way to all of Z x G.

(3) If n € N then the direct product of additive groups R" = R x
.-+ %X R (n-times) can be thought of as an R-module in a natural

way, with scalar multiplication defined componentwise. The
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module R" is called the free module of rank n over R (more

justification for this terminology will be given below).

If S C R is a commutative ring with identity then (R, +) can
be thought of in a natural way as an S-module.

Generalizing the previous example, if M is an R-module and
S C R is a subring of R (with identity) then M can also be
thought of in a natural way as an S-module.

If M is an additive subgroup of R then M will be an R-module
(with scalar multiplication corresponding to multiplication in
R) if and only if for every r € R and = € M, we have rz € M.
Equivalently, M will be an R-module if and only if it is an ideal

of R.

Generalizing the previous example, if M is an R-module and if
N is an additive subgroup of M, then N will be a sub-module
of M if and only if rn € N, forallr € Rand n € N.

Suppose F'is a field and let R = F[z]. If V is an F-vector space
and T : V — T is a linear transformation, then we can define a
binary operation - : R xV — V as follows. Suppose that f € R

and write
n

f(z) = Zaixi, a; € F,
i=0
then for any v € V define

f-v= ZaiTi(v),
=0
where T = T o---oT (i-times). It is not difficult to check that
this turns V' into an R-module.

Now suppose that V' is any R = F[z] module, where F is a
field. Then, since V is an F' module, it is a vector space over
F. Define amap T :V — V by

T(v)=uz-v.
By the R-module properties, we have for any a € F' and v, w €
V that
T(av +w) = aT(v) + T(w),
therefore T' is an F-linear transformation. It is also clear from

the R-module properties that V' is precisely the R-module ob-
tained from V and T, using the construction in the previous
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example. This example shows that when F' is a field, F[z]-
modules correspond in a natural way to vector spaces V' over
F, together with a choice of linear transformation 7": V' — V.

(10) Continuing the previous two examples, suppose that F' is a
field, that V is an R = F[z]-module, and that 7" is the linear
transformation of V' corresponding to scalar multiplication by
r € R. If W CV is any R-sub-module then, first of all, it must
be an F-vector space, so it must be a subspace of V. In addition,
by the result of Example 7 it must satisfy the condition that
T(w) € W, for all w € W. It is not difficult to check that these
conditions are necessary and sufficient. In other words, the
R-sub-modules of V' in this case are precisely the T-invariant
subspaces of V' (i.e. subspaces W C V' which satisfy T (W) C

(11) If I is an ideal of R then the additive group R/I is an R-module,
with scalar multiplication defined by

r(x+1)=rz+1.

The fact that I is an ideal guarantees that this operation is well
defined, i.e. that it does not depend on the choice of represen-
tative for the coset x + I.

(12) Suppose that M is an R-module and that [ is an ideal of R. If
ar =0 for all @ € [ and x € M then M can also be thought of
as an (R/I)-module, with scalar multiplication defined by

(r+1)x=rz.

Note that if r + 1 = s+ 1 in R/I then rx — sx = (r — s)x =0,
so rx = sx in M. This shows that scalar multiplication in this
example is well defined.

(13) Following from the previous example, let (G,+) be a finite
Abelian group with exponent n € N (recall that the exponent
of a finite group is the least common multiple of the orders of
all of its elements). We know from example (2) that G is a
Z-module. For every x € GG and for every element r in the ideal
nZ C Z we have that rx = 0. Therefore, as described in the
previous example, G' can be thought of in a natural way as a
(Z/nZ)-module.

If M is an R-module and if N C M is a sub-module then the quotient
module is the R-module (M/N,+) with scalar multiplication defined
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by
r(z+ N)=rxz+ N.
Note that the fact that N is a sub-module guarantees that this is well

defined. It is not sufficient in general just to assume that N is an ad-
ditive subgroup of M.

If M and N are R-modules then a map ¢ : M — N is called an
R-module homomorphism if

o(r+y) =) +ey) and @(rz) =re(z),

for all x,y € M and r € R. Analogues of the group and ring isomor-
phism theorems hold for R-modules. For example, the 1st isomorphism
theorem for R-modules states that, given an R-module homomorphism
as above, we have that ker(y) is a sub-module of M, that p(M) is a
sub-module of N, and that

M /ker(p) = o(M).

Given an R-module M, a subset A C M is called a generating set
for M over R if, for every x € M, there existsann € N, ry,...,r, € R,
and z1,...,x, € A with

=711+ -+ Tl

If M can be generated by a finite set A then we say that M is a finitely
generated R-module.

We say that a set A C M is R-linearly independent if whenever
rixry+ -+ rpx, =0,

for some n € N, rq,...,r, € R, and for distinct elements z1,...,x, €
A, it must be the case that r; = --- = r, = 0. Otherwise we say that
A is R-linearly dependent. A module M is called torsion free if
whenever rz = 0, for some r € R and = € M, it must be the case that
r=0orx=0.

If M contains an R-linearly independent, generating set A, then M is
called a free module, and A is called an R-basis (or simply a basis,
if there is no ambiguity) for M. Not every module is a free module. In
order to better appreciate this fact, consider the following examples.

(14) Suppose that R is an integral domain and that M is an R-
module which is not torsion free (e.g. a finite Abelian group G
viewed as a Z-module). Then there exist nonzero elements r €
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R and z € M with ro = 0. If A C M is any generating set for
M then there exist n € N, ry,...,r, € R, and x1,...,x, € M
with

=711+ "+ Tpln.

We can assume without loss of generality that none of the r;’s
are 0, and also (by grouping together like terms if necessary)
that the x;’s are distinct. Multiplying both sides of this equa-
tion by r gives

0=rx=(rr)z+ -+ (rrp)T,.

Since R is an integral domain, none of the coefficients rr; on
the right hand side are 0. Therefore the set A is R-linearly
dependent. This shows that there are no linearly independent
generating sets for M, so M is not a free module.

(15) If we drop the assumption that R is an integral domain in the
previous example, then we cannot reach the same conclusion.
To see this, take R = Z/67Z and let M be the additive group
of R, viewed as an R-module (as in example (4) above). Then
M is not torsion free, because rx = 0 with r = 2 and = = 3.
However, the set {1} is a basis for M, so M is a free module.

(16) As another example of a module which is not free, let M =
(Q,+) and let R = Z. Integer multiplies of a rational number
cannot increase the denominator, therefore any generating set
for Q must contain more than one element. However, if x; =
p1/q1 and xo = po/qe are distinct, non-zero elements of Q then

q@1p221 + (—qop1)x2 = 0,

and q;ps and —q@op; are non-zero integers. Therefore any gen-
erating set for Q over Z is linearly dependent, and Q is not a
free Z-module.

(17) In the previous example, if we had considered Q as a Q-module
then of course it would have been a free module, since {1} is
a (Q-basis for Q. More generally, since a module over a field
is a vector space, and since any vector space has a basis, any
module over a field is a free module.

If an R-module M is a free module then any basis for M over R will
have the same cardinality (for completeness we point out that this is
not true in general for modules over non-commutative rings, which we
have not defined). The cardinality of any basis for a free module M
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over R is called the rank of M over R. If M is a free R-module of rank
n € N then, by choosing a basis, we may identify M (isomorphically)
with R™. This justifies calling R" the free module of rank n over R.
In general, even if M is an R-module which is not free, we still define
the rank of M to be the largest cardinality of a subset of M which is
R-linearly independent.

In the special case when R is a PID, we have several very useful
structure results.

Theorem 1 (Stacked bases theorem). Suppose that R is a PID, that
M is a free R-module of rank n € N, and that N C M s a sub-module.
Then

(i) N is a free module of rank m < n, and

(i) There are a basis x1,...,x, for M and non-zero elements ry,
..o, € R satisfying ri|riy1 for each 1 < i < n, and for which
T1T1, ..., Ty 1S a basis for N.

This theorem is extremely useful in many problems, for example
when working with sub-lattices of finitely generated lattices in locally
compact Abelian groups, a situation which occurs often in both num-
ber theory and dynamical systems. It can also be used to derive the
following fundamental result.

Theorem 2 (Structure theorem for finitely generated modules over
a PID). Suppose that R is a PID and that M is a finitely generated
R-module. Then

(i) (Invariant factor decomposition) There are integers r,m > 0
and non-zero, non-unit elements ay, ..., a,, € R satisfying

M= R"x R/(ay) X -+ x R/(ay,),
and ailaq] ... |ay, and this decomposition is unique.

(ii) (Elementary divisor decomposition) There are integers v,k > 0,
prime elements py,...,pr € R (not necessarily distinct), and
positive integers ay, . .., ay, for which

M= R"x R/(p1") x -+ x R/ (p}*),

and this decomposition is unique up to the arrangement of the
factors.
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In the special case of this theorem when R = Z, we recover from The-
orem 2 the Fundamental theorem for finitely generated Abelian groups.

In the special case when R = F[z], where F' is a field, the Invariant
factor decomposition in Theorem 2 gives us the rational canonical form
of the associated linear transformation 7" (see Examples 8-10 above).
The Elementary divisor decomposition gives us the Jordan canonical
form of the linear transformation, provided the field F' contains all of
its eigenvalues.



