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We assume familiarity with the definitions of the terms commutative
ring, ideal, prime ideal, irreducible element, greatest common divisor,
Euclidean Domain (ED), Principal Ideal Domain (PID), Unique Fac-
torization Domain (UFD), Integral Domain (ID), field, and field of
fractions. Recall that for commutative rings we have the following
heirarchy:

(ED)⇒ (PID)⇒ (UFD)⇒ (ID).

Theorem (Division Algorithm). Suppose that F is a field, that f, g ∈
F [x] and that g 6= 0. Then there are unique polynomials q, r ∈ F [x]
satisfying

f = qg + r and r = 0 or deg(r) < deg(g).

Corollary. If F is a field then F [x] is a UFD. In particular, for any
f ∈ F [x] \ {0}, there exist λ ∈ F and monic irreducible polynomials
f1, . . . , fn ∈ F [x] such that

f = λf1 · · · fn,
and this factorization into monic irreducible polynomials is unique up
replacement of the factors by associates, and reordering.

Theorem (Gauss’s Lemma). Suppose that R is a UFD and F is its
field of fractions. If f is irreducible in R[x] then it is irreducible in
F [x].

Theorem. A ring R is a UFD if and only if R[x] is a UFD.

Useful results for factoring polynomials:

(1) Bezout’s Theorem: If F is a field and if f ∈ F [x], then an
element α ∈ F is a root of f if and only if (x− α)|f .

Corollary: If F is a field then any non-zero polynomial f ∈
F [x] has at most deg(f) roots.
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(2) Abel’s Theorem: Suppose that F is a field, that f, g ∈ F [x],
and that f is irreducible. Then either f |g or gcd(f, g) = 1.

Corollary: If F is a field and if f, g ∈ F [x] are both monic and
irreducible then either f = g or gcd(f, g) = 1.

(3) Lemma: If f is a polynomial with coefficients in a field F , and
if deg(f) = 2 or 3, then f is irreducible over F if and only if f
has no roots in F .

Lemma: Suppose that f ∈ Z[x] is given by

f(x) =
n∑

i=0

aix
i, with ai ∈ Z, an 6= 0.

If f(p/q) = 0 for some p/q ∈ Q with gcd(p, q) = 1, then p|a0
and q|an.

Lemma: Let F be a field and suppose that f, g ∈ F [x] satisfy
deg(f) ≥ 1 and f(x) = g(x + λ) for some λ ∈ F . Then f is
irreducible over F if and only if g is irreducible over F .

(4) Reduction Test: Suppose that R is an ID and that I ⊆ R
is a proper ideal, and let f ∈ R[x] be a non-constant monic
polynomial. If the image of f in (R/I)[x] is irreducible, then f
is irreducible over R.

Eisenstein’s Criterion: Suppose that R is an ID and that P
is a prime ideal in R, and suppose that f ∈ R[x] is given by

f(x) =
n∑

i=0

aix
i,

with ai ∈ P for 0 ≤ i < n, with the gcd of the coefficients of f
equal to 1, and with an 6∈ P and a0 6∈ P 2. Then f is irreducible
over R.

Eisenstein’s Criterion Over Z: Suppose that f ∈ Z[x] is
given by

f(x) =
n∑

i=0

aix
i,

with gcd(a0, . . . , an) = 1, and suppose that p is a prime such
that p|ai for 0 ≤ i < n, and such that p - an and p2 - a0. Then f
is irreducible over Z (and therefore over Q by Gauss’s Lemma).


