1. Assume that $H \triangleleft K \triangleleft G$ and $H \triangleleft G$.
 (a) (2 points) Prove that K/H is a subgroup of G/H.
 (b) (2 points) Prove $K/H \triangleleft G/H$.

2. (2 points) Let G and H be finite groups. Let $\varphi : G \to H$ be a surjective homomorphism. Prove that $|H|$ divides $|G|$.

3. (2 points) Let $\varphi : G \to K$ be a surjective homomorphism. Let $J \triangleleft K$. Prove that there exists a normal subgroup H of G such that G/H is isomorphic to K/J.

4. Find, up to isomorphism, all abelian groups of order
 (a) (1 point) 324,
 (b) (1 point) 900.