1. (1 point) Prove that \mathbb{Z}_n is a field if and only if n is a prime number.

2. (1 point) Let R be a ring with unity. Assume that for all x and y in R we have $(xy)^2 = x^2y^2$. Prove that R is commutative.

3. Let $S = \{q \in \mathbb{Q} : q = \frac{a}{b}, a, b \in \mathbb{Z}$ and b odd\}.

 (a) (0.5 points) Prove that S is a subring of \mathbb{Q}.
 (b) (0.5 points) Prove that S has a unique maximal ideal.

4. Let R be a commutative ring with unity $1 \neq 0$.

 (a) (0.5 points) Prove that R is an integral domain if and only if $\{0\}$ is a prime ideal in R.
 (b) (0.5 points) Prove that R is a field if and only if $\{0\}$ is a maximal ideal in R.

5. (2 points) Let I be an ideal in the commutative ring R. Define
 \[
 \text{rad}(I) = \{r \in R \mid \exists n \in \mathbb{N} : r^n \in I\}.
 \]
 Prove that $\text{rad}(I)$ is an ideal with $I \subset \text{rad}(I)$.

6. (2 points) Let R be a commutative ring and I a prime ideal. Prove that $\text{rad}(I) = I$.

7. Which of the following is a ring homomorphism? Prove your answer.
 (a) (1 point) $\varphi : \mathbb{R} \to \mathbb{R}, \varphi(x) = |x|$,
 (b) (1 point) $\varphi : \mathbb{C} \to \mathbb{C}, \varphi(a + ib) = a - ib$.