1. Does addition yield a binary operation ...
 (a) (1 point) on the set \{\ldots , -9, -6, -3, 0, 3, 6, 9, \ldots \} of multiples of 3? If yes, is the set with the binary operation a group?
 (b) (1 point) on the set \{\ldots , -3, -1, 1, 3, \ldots \} of odd integers? If yes, is the set with the binary operation a group?

2. (2 points) Let \(G \) be the set of all \(2 \times 2 \) matrices
\[
\begin{pmatrix}
 a & b \\
 -b & a
\end{pmatrix},
\]
where \(a, b \in \mathbb{R} \) and \(a^2 + b^2 \neq 0 \). Prove that \(G \) forms a group with the usual matrix multiplication. You may freely use basic facts from linear algebra without proof.

3. (2 points) Let \(G \) be a group. Let \(a_1, \ldots , a_n \) be elements of \(G \). Prove that \((a_1 \ldots a_n)^{-1} = a_n^{-1} \ldots a_1^{-1}\). You must use induction to carefully prove this statement.

4. (0 points) Let \((G, \ast)\) be a group such that \(x \ast x = e \) for all \(x \in G \). Prove that \(G \) is abelian.

5. In class, we defined a binary operation \(\oplus \) on \(\mathbb{Z}_n = \{0, 1, 2, \ldots , n - 1\} \). We now define a binary operation \(\odot \) on \(\mathbb{Z}_n \) by setting \(a \odot b := a \cdot b \).
 (a) (1 point) Prove that \(\odot \) is associative.
 (b) (0.5 points) Does \(\mathbb{Z}_4 \setminus \{0\} \) form a group with \(\odot \)? Prove your answer.
 (c) (0.5 points) Does \(\mathbb{Z}_5 \setminus \{0\} \) form a group with \(\odot \)? Prove your answer.

6. In \(\mathbb{Z}_{13} \), solve
 (a) (1 point) the equation \(2 \oplus 8 \oplus x \oplus 4 = 7 \) for \(x \).
 (b) (1 point) the equation \(11 \odot x = 10 \) for \(x \).