Problem 1. The isomorphism is given by $\phi : G \times H \rightarrow H \times G, (g,h) \mapsto (h,g)$.

Problem 2. $H = \{(0,0), (0,2)\}$, $K = \{(0,0), (1,0)\}$. Then $G/H = \mathbb{Z}_2 \times \mathbb{Z}_2$ and $G/K = \mathbb{Z}_4$. Note that they aren’t isomorphic because there is not an element of order 4 in \mathbb{Z}_2 but there is one in \mathbb{Z}_4.

Problem 3. $\text{Aut}(G)$ is a subset of S_G obviously. Then to show $\text{Aut}(G)$ is a subgroup we need to show $\text{Aut}(G)$ is closed under composition and inverse. For $f, g \in \text{Aut}(G)$, $f \circ g$ is clearly a bijection, so we just need to show $f \circ g$ is a homomorphism. For every $r, s \in G$,

$$f \circ g(rs) = f(g(r)s) = f(g(r))g(s) = f(g(r))f(g(s)) = f \circ g(r)f \circ g(s)$$

Thus $f \circ g$ is a homomorphism. Note that $\text{id}_G \in \text{Aut}(G)$. $\text{Aut}(G)$ is closed under inverse by Thm12.1(iii).

Problem 4. \mathbb{Z} is a cyclic group, for every $f \in \text{Aut}(\mathbb{Z})$ we must have $f(1) = \pm 1$ Note that $\text{Aut}(\mathbb{Z})$ has only two elements, and groups with two elements has only one structure.

Problem 5. This is not true. Assume $\phi \in \text{Aut}(G)$, then ϕ is homomorphism. For $r, s \in G$, if $r \in H, s \notin H$, then $rs \notin H$. $\phi(rs) = rs = \phi(r)\phi(s) = \psi(r)s$, thus $\psi(r) = r$. This can only happen when $\phi = \text{id}_H$. Of course not every automorphism is identity map.