UH - Math 4377/6308 - Dr. Heier - Fall 2010 HW 1

Due $09 / 01$, at the beginning of class.

Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Let $A=\{1,2,3\}, B=\{3,4\}, C=\{4,6\}$. Explicitly write down the sets

$$
A \cup B, A \cap(B \cup C), B \cap(A \backslash B), A \times C
$$

2. (2 points) Let $x, y \in \mathbb{Z}$. Prove or disprove that the following relations are equivalence relations.
(a) $x \sim y$ if and only if $x-y$ is negative.
(b) $x \sim y$ if and only if $x-y$ is even.
3. (3 points) Let $f:\{0,1,2,3,4\} \rightarrow \mathbb{N}, n \mapsto n^{2}-n$.
(a) Find the domain, codomain and range of f.
(b) Is f one-to-one?
(c) Is f onto?
4. (1 point) Let a be an arbitrary element in a field. Prove that the additive inverse $-a$ is unique. (Hint: You may use without proof the Cancellation Laws Theorem.)
5. (1 point) Let $z=1+4 i, w=1-i$. Write $\bar{z}, z+w, z w,|z|, \frac{1}{z}$ in the form $a+b i$.
6. (1 point) Solve $z^{2}-4 z+20=0$ in \mathbb{C}.
7. (1 point) Describe the plane in \mathbb{R}^{3} through $(1,2,3),(2,0,1),(0,1,0)$ as discussed in class.
8. (1 extra credit point) Let $x, y \in \mathbb{Z}$. Let $x \sim y$ if and only if $y+4 x$ is an integer multiple of 5 . Prove that \sim is an equivalence relation.
