```
UH - Math 4377/6308 - Dr. Heier - Fall 2010
    HW 3
Due 09/15, at the beginning of class.
```

Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Section 1.3, Problem 18.
2. Let $W_{1}=\left\{\left(a_{1}, a_{2}, a_{1}+a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$.
(a) (1 point) Give an example of a subspace W_{2} such that $W_{1} \oplus W_{2}=\mathbb{R}^{3}$. Justify your answer.
(b) (1 point) Let $W_{2}=\left\{\left(a_{1}, a_{1}+a_{2}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$. Is $W_{1} \oplus W_{2}=\mathbb{R}^{3}$? Is $W_{1}+W_{2}=\mathbb{R}^{3}$? Justify your answer.
3. (1 point) Section 1.4, Problems 2(c), 2(e), and 2(f).
4. (1 point) Section 1.4, Problems 3(c), and 3(d).
5. (1 point) Which vectors (a, b, c) are in $\operatorname{span}(\{(2,1,4),(1,0,1),(3,1,5)\})$?
6. (1 point) Section 1.4, Problem 12.
7. (1 point) Section 1.5, Problem 1. (Just say true or false, no further explanation necessary.)
8. (1 point) Section 1.5, Problem 3.
9. (1 point) Can 8 vectors in \mathbb{R}^{7} be linearly independent? Justify your answer with an argument about solutions of homogeneous systems of linear equations.
10. (1 extra credit point) We saw in class that the set of functions $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ is a vector space. Give two subspaces W_{1}, W_{2}, each not the zero vector space, such that $W_{1} \oplus W_{2}=V$. Justify your answer carefully.
