```
UH - Math 4377/6308 - Dr. Heier - Fall 2010
HW 6
```

Due 10/06, at the beginning of class.
Use regular sheets of paper, stapled together. Don't forget to write your name on page 1.

1. (1 point) Section 2.2, Problem 1 (Just say true or false, no further explanation necessary.)
2. (1 point) Section 2.2, Problem 3
3. (1 point) Section 2.2, Problem 5(a)
4. (1 point) Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T_{1}\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right)$. Let $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,2),(1,1)\}$. Compute $[T]_{\beta}^{\gamma}$.
5. (1 point) Let $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T_{2}\left(a_{1}, a_{2}\right)=\left(2 a_{1}+4 a_{2},-a_{1}-a_{2}\right)$. Let $\beta=\{(1,2),(-1,1)\}$ and $\gamma=\{(2,1),(2,0)\}$. Compute $[T]_{\beta}^{\gamma}$.
6. (1 point) Section 2.2, Problem 10
7. (1 point) Section 2.2, Problem 13
8. (1 point) Section 2.2, Problem 15
9. (1 point) Section 2.3, Problem 1
10. (1 point) Let T_{1}, T_{2} be as above. Let $\alpha=\{(1,1),(0,1)\}, \beta=\{(1,2),(-1,1)\}$, $\gamma=\{(0,1),(2,1)\}$. Verify explicitly that $\left[T_{2} \circ T_{1}\right]_{\alpha}^{\gamma}=\left[T_{2}\right]_{\beta}^{\gamma}\left[T_{1}\right]_{\alpha}^{\beta}$. (This is of course assured by Theorem 2.11.)
11. (1 extra credit point) Section 2.2, Problem 16
