UH - Math 4377/6308 - Dr. Heier - Fall 2010
 Sample Midterm Exam II
 Time: 53 min

1. (a) (15 points) Let $W_{1}=\left\{\left(a_{1}, a_{2}, a_{1}-a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$. Let $W_{2}=\{(b,-b, 0) \mid b \in$ $\mathbb{R}\} \subset \mathbb{R}^{3}$. Is $W_{1} \oplus W_{2}=\mathbb{R}^{3}$? Justify your answer.
(b) (10 points) Determine if the following subset S of the vector space of 2×2 matrices with real entries is a subspace. Justify your answer carefully.

$$
S=\left\{\left(\begin{array}{cc}
a & b \\
c & a \cdot b \cdot c
\end{array}\right): a, b, c \in \mathbb{R}\right\} .
$$

2. (a) (10 points) Find nullity and rank of

$$
T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3},\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mapsto\left(a_{1}+a_{5},-a_{1}+a_{2}+a_{3}, 3 a_{1}-a_{2}-a_{3}+2 a_{5}\right)
$$

(b) (15 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-2 a_{2}\right)$. Let $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,2),(1,1)\}$. Compute $[T \circ T]_{\beta}^{\gamma}$.
3. (a) (15 points) Let $T: V \rightarrow W$ be an invertible linear transformation. Prove that the inverse $T^{-1}: W \rightarrow V$ is linear.
(b) (10 points) Let $T: V \rightarrow V$ be a linear transformation. Let $T \circ T: V \rightarrow V$ be the zero transformation, i.e., for all $v \in V, T(T(v))=\overrightarrow{0}$. Prove that T is not invertible.
4. Let f_{1}, f_{2}, f_{3} be linear functionals on \mathbb{R}^{3} defined by

$$
f_{1}(x, y, z)=x-y \quad f_{2}(x, y, z)=x+y+z \quad f_{3}(x, y, z)=y-z .
$$

(a) (10 points) Show that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis for $\mathbb{R}^{3^{*}}$.
(b) (15 points) Find a basis for \mathbb{R}^{3} that is dual to $\left\{f_{1}, f_{2}, f_{3}\right\}$.

