UH - Math 4377/6308 - Dr. Heier - Fall 2011
 Sample Midterm Exam I
 Time: 53 min

1. (a) (10 points) Solve the equation $z(1+i)=2+3 i$ for z.
(b) (10 points) Let A, B, C be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Assume that f and g are one-to-one. Prove that the composition $g \circ f$ is one-to-one.
2. (a) (10 points) Find the condition on a, b, c so that

$$
(a, b, c) \in \operatorname{span}\{(1,1,0),(3,0,3),(-1,1,-2)\}
$$

(b) (20 points) Find bases for the kernel and range of $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$, $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mapsto\left(a_{1}+a_{3}-a_{4}+a_{5},-a_{1}+a_{2}+a_{4},-a_{1}+2 a_{4},-a_{1}+a_{2}+a_{3}+2 a_{4}+a_{5}\right)$.
3. (a) Let $G=\{(1,2,3),(-1,1,1),(2,-2,0)\}$. Let $L=\{(1,0,1),(-1,2,1\}$.
(i) (10 points) Show that G is a basis for \mathbb{R}^{3}.
(ii) (10 points) Find a vector $v \in G$ such that $\{v\} \cup L$ is a basis for \mathbb{R}^{3}. Prove the basis property.
(b) (10 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right)$. Let $\beta=\{(1,1),(-2,1)\}$ and $\gamma=\{(1,0),(1,-1)\}$. Compute $[T]_{\beta}^{\gamma}$.
4. (a) (6 points) Give an example of a linear transformation that is one-to-one, but not invertible. You are expected to justify your answer completely, so choose an example that easily allows for that.
(b) (7 points) Let V be a finite-dimensional vector space. Let $T: V \rightarrow W$ be a one-to-one linear transformation. Let V_{0} be a subspace of V. Prove that $\operatorname{dim} V_{0}=\operatorname{dim} T\left(V_{0}\right)$.
(c) (7 points) Let $\left\{v_{1}, v_{2}\right\}$ be a basis for \mathbb{R}^{2}. Is $\left\{v_{1}+v_{2}, v_{1}-v_{2}\right\}$ is basis for \mathbb{R}^{2} ? Justify your answer carefully.

