UH - Math 4377/6308 - Dr. Heier - Fall 2011 Sample Midterm Exam I Time: 53 min

- 1. (a) (10 points) Solve the equation z(1+i)=2+3i for z.
- (b) (10 points) Let A, B, C be sets. Let $f: A \to B$ and $g: B \to C$ be functions. Assume that f and g are one-to-one. Prove that the composition $g \circ f$ is one-to-one.
- **2.** (a) (10 points) Find the condition on a, b, c so that

$$(a, b, c) \in \text{span}\{(1, 1, 0), (3, 0, 3), (-1, 1, -2)\}.$$

- (b) (20 points) Find bases for the kernel and range of $T: \mathbb{R}^5 \to \mathbb{R}^4$, $(a_1, a_2, a_3, a_4, a_5) \mapsto (a_1 + a_3 a_4 + a_5, -a_1 + a_2 + a_4, -a_1 + 2a_4, -a_1 + a_2 + a_3 + 2a_4 + a_5)$.
- **3.** (a) Let $G = \{(1,2,3), (-1,1,1), (2,-2,0)\}$. Let $L = \{(1,0,1), (-1,2,1)\}$.
 - (i) (10 points) Show that G is a basis for \mathbb{R}^3 .
- (ii) (10 points) Find a vector $v \in G$ such that $\{v\} \cup L$ is a basis for \mathbb{R}^3 . Prove the basis property.
- (b) (10 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(a_1, a_2) = (a_1 + a_2, a_1 a_2)$. Let $\beta = \{(1, 1), (-2, 1)\}$ and $\gamma = \{(1, 0), (1, -1)\}$. Compute $[T]^{\gamma}_{\beta}$.
- **4.** (a) (6 points) Give an example of a linear transformation that is one-to-one, but not invertible. You are expected to justify your answer completely, so choose an example that easily allows for that.
- (b) (7 points) Let V be a finite-dimensional vector space. Let $T: V \to W$ be a one-to-one linear transformation. Let V_0 be a subspace of V. Prove that dim $V_0 = \dim T(V_0)$.
- (c) (7 points) Let $\{v_1, v_2\}$ be a basis for \mathbb{R}^2 . Is $\{v_1 + v_2, v_1 v_2\}$ is basis for \mathbb{R}^2 ? Justify your answer carefully.