UH - Math 4377/6308 - Dr. Heier - Fall 2011
 Sample Final Exam
 Time: 175 min
 WITH SOLUTION

1. (a) (3 points) Let $z=a+i b$ be a complex number. Prove that $|z|^{2}=z \bar{z}$.
(b) (4 points) Solve the equation $z(1+i)=i$ for z.
(c) (3 points) Is the function $f:(1,4) \rightarrow(1,2), x \mapsto \sqrt{x}$ one-to-one? Onto?
2. (a) (5 points) Determine if the following subset of \mathbb{R}^{2} is a subspace. Justify your answer carefully:

$$
\left\{\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}: a_{1} \cdot a_{2}=0\right\}
$$

(b) (5 points) Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces. You may assume as true that the set of 2×2 matrices with real entries forms a vector space with the usual addition and scalar multiplication.
(a) $\left\{\left(\begin{array}{cc}a_{1} & a_{1}+a_{2} \\ a_{2} & 0\end{array}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$
(b) $\left\{\left(\begin{array}{cc}a_{1} & a_{1} \cdot a_{2} \\ a_{2} & a_{3}\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
3. (a) (5 points) Find bases for the kernel and range of

$$
T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4},\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mapsto\left(a_{1}+a_{4}+a_{5},-a_{1}+a_{2}+a_{4}, a_{5}-a_{4}, a_{1}+2 a_{5}\right)
$$

(b) (5 points) Let $G=\{(1,-1,0,1),(1,0,1,0),(1,2,4,2),(0,2,2,2)\}$. Let $L=\{(2,-4,-3,0)\}$. Find a subset $H \subset G$ of cardinality 3 such that $H \cup L$ spans \mathbb{R}^{4}. Prove the spanning property with an explicit computation.
4. (a) (5 points) Find the rank of

$$
\left(\begin{array}{llll}
2 & 2 & 0 & 1 \\
3 & 1 & 3 & 3 \\
5 & 3 & 3 & 4 \\
7 & 5 & 3 & 5 \\
8 & 4 & 6 & 7
\end{array}\right)
$$

(b) (5 points) Give an example of $A, B \in M_{4 \times 4}(\mathbb{R})$ such that both A and B have rank 2, but their product $A B$ has rank 1 .
5. (10 points) Find the inverse of

$$
\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right)
$$

6. (a) (5 points) Let

$$
A=\left(\begin{array}{ccc}
2 & 2 & 0 \\
3 & 1 & 3 \\
5 & 3 & -2
\end{array}\right)
$$

and let

$$
B=\left(\begin{array}{ccc}
1 & 1 & -1 \\
3 & 1 & 3 \\
4 & 2 & 1
\end{array}\right)
$$

Find $\operatorname{det}(A), \operatorname{det}(B)$ and $\operatorname{det}(A B)$.
(b) (5 points) Compute the determinant of

$$
\left(\begin{array}{cccc}
5 & -1 & 0 & 1 \\
4 & 0 & 1 & 0 \\
5 & 2 & 5 & 3 \\
4 & -4 & -3 & 0
\end{array}\right)
$$

7. (a) (5 points) Let $A, B \in M_{n \times n}(\mathbb{R})$ be such that $A B=-B A$. Prove that if n is odd, then at least one of the two matrices A, B is not invertible.
(b) (5 points) Let $A \in M_{n \times n}(\mathbb{R})$ have two distinct eigenvalues λ_{1}, λ_{2}. Give a necessary and sufficient criterion in terms of $\operatorname{dim} E_{\lambda_{1}}$ and $\operatorname{dim} E_{\lambda_{2}}$ for the diagonalizability of A.
8. (a) (5 points) Find the eigenvalues of

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

(b) (5 points) Find the eigenvectors of A.
(c) (5 points) Find a matrix Q such that $Q^{-1} A Q$ is diagonal.
9. (15 points) Is the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & -8 \\
-4 & 9 & -4 \\
-10 & 0 & -1
\end{array}\right)
$$

diagonalizable? If yes, give a basis of eigenvectors of A for \mathbb{R}^{3}.

Solution

1. a) Left hand side: $|z|^{2}={\sqrt{a^{2}+b^{2}}}^{2}=a^{2}+b^{2}$

Right " ": $z \bar{z}=(a+i b)(a-i b)=$

$$
\begin{aligned}
& =a^{2}-i a b+i a b+i(-i) b^{2} \\
& =a^{2}+b^{2}
\end{aligned}
$$

$$
i^{2}=-1
$$

b) $z=\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2} i$
c) One-to-one: yes: let $\sqrt{x}=\sqrt{y}$

$$
\Rightarrow \sqrt{x}^{2}=\sqrt{y}^{2} \Rightarrow x=y
$$

Onto: yes let $y \in(1,2)$. Them

$$
y^{2} \in(1,4) \text { and } \sqrt{y^{2}}=y \text {. }
$$

2. a) ($\left.\begin{array}{l}1 \\ 0\end{array}\right)$ and $\binom{0}{1}$ both satisfy $a_{1} \cdot r_{2}=0$ but $\binom{1}{0}+\binom{0}{1}=\binom{1}{1}$ does not. \Rightarrow not a subspue
b) a) Closedness for " + ":

$$
\begin{aligned}
& \text { a) Closedness for } \left.+\begin{array}{l}
a_{1} a_{1}+a_{2} \\
a_{2}
\end{array}\right)+\left(\begin{array}{cc}
b_{1} & b_{1}+b_{2} \\
b_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
a_{1}+b_{1} & a_{1}+a_{2}+b_{1}+b_{2} \\
a_{2}+b_{2} & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
a_{1}+b_{1} \\
a_{2}+b_{2} & \left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)
\end{array}\right)
\end{aligned}
$$

Coseelness for ".":

$$
c\left(\begin{array}{cc}
a_{1} & a_{1}+a_{2} \\
a_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
c a_{1} & c\left(a_{1}+a_{2}\right) \\
c a_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
c a_{1} & c a_{1}+c a_{2} \\
c a_{2} & 0
\end{array}\right)
$$

b) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ both satisfy the condition, $\operatorname{sut}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$ does not \Rightarrow not closed \Rightarrow not a subspace

3 a) Computation yells

$$
\begin{aligned}
& N(T)=\left\{\left.\left(\begin{array}{c}
-2 a_{5} \\
-3 a_{5} \\
a_{3} \\
a_{5} \\
a_{5}
\end{array}\right) \right\rvert\, a_{3}, a_{5} \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{c}
-2 \\
-3 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)\right\} \\
& \operatorname{dim}_{5^{\prime \prime}}\left(\mathbb{R}^{5}\right)=\operatorname{dim}_{2_{2}^{\prime \prime}} N(T)+\operatorname{dim} R(T)
\end{aligned}
$$

\Rightarrow need 3 lin videp vector to have Sasis for the range $R(T)$.

$$
\begin{aligned}
& T\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
& T\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right) \\
& a_{1}\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right)+a_{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+a_{3}\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \Leftrightarrow \cdots\binom{1}{\Leftrightarrow} \\
& \Rightarrow\left\{\left(\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right)\right\} \text { is basis of } R(T)
\end{aligned}
$$

36) Method: Trial and error:

I pies $H=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 2 \\ 2\end{array}\right)\right\}$
Check: $a_{1}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+a_{2}\left(\begin{array}{l}1 \\ 2 \\ 4 \\ 2\end{array}\right)+a_{3}\left(\begin{array}{l}0 \\ 2 \\ 2 \\ 2\end{array}\right)+a_{4}\left(\begin{array}{c}2 \\ -4 \\ -3 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
\Leftrightarrow
$$

$$
\begin{aligned}
a_{1}+a_{2}+2 a_{4} & =0 \\
2 a_{2}+2 a_{3}-4 a_{4} & =0 \\
a_{1}+4 a_{2}+2 a_{3}-3 a_{4} & =0 \\
2 a_{2}+2 a_{3} & =0
\end{aligned}
$$

(1)
(-

$$
\begin{array}{r}
a_{2}+2 a_{3}-2 a_{4}=0 \\
3 a_{2}+2 a_{3}-5 a_{4}=0
\end{array}
$$

(4)
(1)

$$
\Leftrightarrow \quad-23+a_{4}=0
$$

$$
\Leftrightarrow \quad a_{1}=a_{2}=a_{3}=a_{4}=0
$$

4a) Rank is unchangad by taling transpose:

$$
\begin{aligned}
& \left(\begin{array}{lllll}
2 & 3 & 5 & 7 & 8 \\
2 & 1 & 3 & 5 & 4 \\
0 & 3 & 3 & 3 & 6 \\
1 & 3 & 4 & 5 & 7
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccccc}
1 & 3 & 4 & 5 & 7 \\
0 & 3 & 3 & 3 & 6 \\
0 & -3 & -3 & -3 & -6 \\
0 & -5 & -5 & -5 & -10
\end{array}\right) \sim\left(\begin{array}{lllll}
1 & 3 & 4 & 5 & 7 \\
0 & 3 & 3 & 3 & 6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

\# non-zero rows $=2=$ rank

4b)

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

5)

$$
\left(\begin{array}{ccc:ccc}
1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 0 & 1 & 0 \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & 0 & 0 & 1
\end{array}\right)
$$

(it's have not to make a computational error here, but try!)

$$
\left(\begin{array}{ccc:ccc}
1 & 0 & 0 & 9 & -36 & 30 \\
0 & 1 & 0 & -36 & 192 & -180 \\
0 & 0 & 1 & 30 & -180 & 180
\end{array}\right)
$$

Ga) $\quad \operatorname{det} A=2 \cdot\left|\begin{array}{cc}1 & 3 \\ 3 & -2\end{array}\right|-2 \cdot\left|\begin{array}{cc}3 & 3 \\ 5 & -2\end{array}\right|$

$$
\begin{aligned}
& =2(-11)-2(-21)=20 \\
& \operatorname{det} B=\operatorname{det}\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & -2 & 6 \\
0 & -2 & 5
\end{array}\right)=\operatorname{det}\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & -2 & 6 \\
0 & 0 & -1
\end{array}\right) \\
& =2
\end{aligned}
$$

$$
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B=40
$$

b) Suggested method: expansion a long And row:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cccc}
5 & -1 & 0 & 1 \\
4 & 0 & 1 & 0 \\
5 & 2 & 5 & 3 \\
4 & -4 & -3 & 0
\end{array}\right)=-4 \cdot \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 5 & 3 \\
-4 & -3 & 0
\end{array}\right) \\
&-\operatorname{det}\left(\begin{array}{ccc}
5 & -1 & 1 \\
5 & 2 & 3 \\
4 & -4 & 0
\end{array}\right) \\
&=\ldots=-40
\end{aligned}
$$

$7 a)$

$$
\begin{aligned}
& A B=-B A \\
\Rightarrow & \operatorname{det}(A B)=\operatorname{det}(-B A) \\
& \operatorname{det}^{\prime \prime} \cdot \operatorname{det} B \quad \operatorname{det}^{\prime \prime}(-B) \cdot \operatorname{det} A
\end{aligned}
$$

If $\operatorname{det} A=0 \Rightarrow A$ not invertible - done
So assume $\operatorname{det} A \neq 0$. node
$\Rightarrow \quad \operatorname{det} B=\operatorname{det}(-B)=(-1)^{n} \operatorname{det} B \stackrel{\downarrow}{=}-\operatorname{det} B$
$\Rightarrow 2 \cdot \operatorname{det} B=0 \Rightarrow \operatorname{det} B=0$
\Rightarrow I not mivertible QED
75) $\operatorname{dem} E_{\lambda_{1}}+\operatorname{dim} E_{\lambda_{2}}=n$.
$8 a) \quad \operatorname{det}\left(\begin{array}{cc}3-\lambda & 1 \\ 1 & 3-\lambda\end{array}\right)=\lambda^{2}-6 \lambda+8 \stackrel{!}{=} 0$
b) Compute: $\quad \begin{aligned} & E_{2}=\operatorname{span}\left\{\binom{-1}{1}\right\}\end{aligned}$
$\Leftrightarrow \quad h=2$ or $)=4$
$E_{4}=\operatorname{span}\left\{\binom{1}{1}\right\}$
c) $Q=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)$
9)

$$
\text { T) } \begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 0 & -8 \\
-4 & 9-\lambda & -4 \\
-10 & 0 & -1-\lambda
\end{array}\right)= \\
& =(1-\lambda)\left|\begin{array}{cc}
9-\lambda & -4 \\
0 & -1-\lambda
\end{array}\right|-8\left|\begin{array}{cc}
-4 & 9-\lambda \\
-10 & 0
\end{array}\right| \\
& =(9-\lambda)(-(1-\lambda)(\lambda+1)-80)=(9-\lambda)\left(\lambda^{2}-81\right) \\
& =(9-\lambda)(\lambda+9)(\lambda-9)=-(\lambda-9)^{2}(\lambda-(-9))
\end{aligned}
$$

The eigenvalues are: $)_{1}=9$ (twice)

$$
\lambda=-9
$$

$E_{g}=\operatorname{span}\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$ (computation omitted)
$E_{-q}=\operatorname{span}\left\{\left(\begin{array}{l}4 \\ 2 \\ 5\end{array}\right)\right\} \quad$ (computation omitted)
$\Rightarrow\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 5\end{array}\right)\right\}$ is a basis
of eigurectors (and A is cliagona izable)

