UH - Math 4377/6308 - Dr. Heier - Fall 2012
 Sample Midterm Exam I
 Time: 78 min

1. (a) (5 points) Let $X=\{1,2,3,4\}$ and $Y=\{3,4\}$. Call two subsets A, B of X equivalent if $A \cup Y=B \cup Y$. Prove that this defines an equivalence relation on the set of subsets of X.
(b) (5 points) Let $z=1+4 i$ and $w=-4-3 i$. Find $|w|$. Write $z w$ and $\frac{z}{w}$ in the form $a+b i$.
2. (a) (10 points) Let $W_{1}=\left\{\left(a_{1}, a_{2}, a_{1}-a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$. Let $W_{2}=\{(b,-b, 0) \mid b \in$ $\mathbb{R}\} \subset \mathbb{R}^{3}$. Is $W_{1} \oplus W_{2}=\mathbb{R}^{3}$? Justify your answer.
(b) (5 points) Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ be the (infinite dimensional) vector space of all functions $\mathbb{R} \rightarrow \mathbb{R}$. Let $W=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(1)=f(2)=0\}$. Is W a subspace of V ? Prove your answer.
3. (a) (5 points) Find the condition on a, b, c so that

$$
(a, b, c) \in \operatorname{span}\{(1,1,2),(3,0,3),(-1,1,0)\}
$$

(b) (10 points) Find a basis for the following subspace W of \mathbb{R}^{5} :

$$
W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in \mathbb{R}^{5}: a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=0, a_{2}=2 a_{3}=-a_{5}\right\}
$$

4. (a) (15 points) Find bases for the kernel and range of $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$, $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mapsto\left(a_{1}+a_{3}-a_{4}+a_{5},-a_{1}+a_{2}+a_{4},-a_{1}+2 a_{4},-a_{1}+a_{2}+a_{3}+2 a_{4}+a_{5}\right)$.
(b) (10 points) Give a complete and explicit list of all linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying both $T(1,1)=(1,2)$ and $T(1,0)=(3,1)$. For every T on your list, compute $T(0,1)$.
5. (15 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2},-a_{1}-a_{2}\right)$. Let $\beta=\{(1,2),(-1,1)\}$ and $\gamma=\{(2,1),(2,0)\}$. Compute $[T]_{\beta}^{\gamma}$ and $\left[T^{-1}\right]_{\gamma}^{\beta}$.
6. (a) (10 points) Let $T: V \rightarrow W$ be a linear transformation. Assume that T is one-toone. Let S be a subset of V. Prove that S is linearly independent if and only if $T(S)$ is linearly independent.
(b) (10 points) Let $T: V \rightarrow W$ be a linear transformation. Suppose $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta)=\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for W.
