UH - Math 4377/6308 - Dr. Heier - Fall 2012
 Sample Midterm Exam II
 Time: 78 min

1. (a) (5 points) Let X, Y, Z be sets. Prove that $(X \cup Y) \backslash Z=(X \backslash Z) \cup(Y \backslash Z)$.
(b) (5 points) Let A, B, C be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Assume that f and g are one-to-one. Prove that the composition $g \circ f$ is one-to-one.
2. (a) (5 points) Determine if the following subset of \mathbb{R}^{3} is a subspace. Justify your answer carefully:

$$
\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}-2 a_{2}+a_{3}^{2}=0\right\} .
$$

(b) (5 points) Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the intersection $W_{1} \cap W_{2}$ is also a subspace of V.
3. (15 points) Find nullity and rank of

$$
T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3},\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mapsto\left(a_{1}+a_{5},-a_{1}+a_{2}+a_{3}, 3 a_{1}-a_{2}-a_{3}+2 a_{5}\right)
$$

4. (a) Let $G=\{(1,2,3),(-1,1,1),(2,-2,0)\}$. Let $L=\{(1,0,1),(-1,2,1)\}$.
(i) (10 points) Show that G is a basis for \mathbb{R}^{3}.
(ii) (10 points) Find a vector $v \in G$ such that $\{v\} \cup L$ is a basis for \mathbb{R}^{3}. Prove the basis property.
5. (15 points) Let $T: V \rightarrow V$ be a linear transformation. Let $T \circ T: V \rightarrow V$ be the zero transformation, i.e., for all $v \in V, T(T(v))=\overrightarrow{0}$. Prove that T is not invertible
(b) (10 points) Let V be a finite-dimensional vector space. Let $T: V \rightarrow W$ be a one-to-one linear transformation. Let V_{0} be a subspace of V. Prove that $\operatorname{dim} V_{0}=\operatorname{dim} T\left(V_{0}\right)$.
(c) (10 points) Let $\left\{v_{1}, v_{2}\right\}$ be a basis for \mathbb{R}^{2}. Is $\left\{v_{1}+v_{2}, v_{1}-v_{2}\right\}$ is basis for \mathbb{R}^{2} ? Justify your answer carefully.
6. (10 points) For the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

and the ordered basis $\beta=\{(1,1),(1,-1)\}$, find an invertible matrix Q such that $\left[L_{A}\right]_{\beta}=$ $Q^{-1} A Q$. Then use the formula to find $\left[L_{A}\right]_{\beta}$ explicitly.

