UH - Math 4377/6308 - Dr. Heier - Fall 2012
 HW 3

Due 09/19, at the beginning of class.

Use regular sheets of paper, stapled together.

Don't forget to write your name on page 1.

1. Determine if the following subsets of \mathbb{R}^{3} are subspaces.
(a) (0.5 points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}-3 a_{3}=0\right\}$
(b) (0.5 points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}-2 a_{2}+a_{3}=1\right\}$
(c) (0.5 points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}=a_{3}\right\}$
(d) $\left(0.5\right.$ points) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}=5 a_{3}\right.$ and $\left.4 a_{2}=a_{1}+a_{3}\right\}$
2. Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces. You may assume as true that the set of 2×2 matrices with real entries forms a vector space with the usual addition and scalar multiplication.
(a) (1 point) $\left\{\left(\begin{array}{cc}a_{1} & a_{2} \\ a_{3} & 0\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
(b) (1 point) $\left\{\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{2} & a_{1}^{2}\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
3. (1 point) A real-valued function f defined on the real line is called an even function if $f(t)=f(-t)$ for each real number t. Prove that the set of even functions is a subspace with the usual addition and scalar multiplication for functions. You may assume as true that the set of real-valued functions f defined on the real line is a vector space with the usual addition and scalar multiplication for functions.
4. (1 point) Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the intersection $W_{1} \cap W_{2}$ is also a subspace of V.
5. (1 point) Section 1.3, Problem 18.
6. (2 points) Let V be the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $W_{1}=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(5)=0\}$. Prove that W_{1} is a subspace of V. Find a subspace $W_{2} \subset V$ such that $V=W_{1} \oplus W_{2}$. Prove all your statements. (This is the problem I posed in class, and I couldn't resist putting it on the homework.)
7. (1 point) Section 1.3, Problem 28 (Work with $F=\mathbb{R}$ only. This allows you to disregard the halfsentence "Now assume that F is not of characteristic 2 (see Appendix C),".)
8. (1 extra point) Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the union $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{2} \subseteq W_{1}$ or $W_{1} \subseteq W_{2}$.
