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0 Foundational material: The appendices

0.1 Appendix A: Sets

Definition 0.1. A set is a collection of objects, called elements.

Example 0.2.

• {1, 2, 3} = {2, 1, 1, 1, 2, 3} (no notion of “multiplicity”)

• [1, 2] = the interval of reals between 1 and 2, including 1 and 2.
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• Z,Q,R,C (later)
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 = set of two vectors

• ∅: the empty set

Given two sets A,B, there are several operations that yield new sets from
these. Most important are the following:

• A ∪B (union of A and B)

• A ∩B (intersection of A and B)

• A×B = {(a, b) : a ∈ A, b ∈ B} (product of A and B)

Definition 0.3. Let A be a set. A relation on A is a subset S of A × A.
Write x ∼ y if and only if (x, y) ∈ S.

Example 0.4. • A = {1, 2, 3}, S = {(1, 2), (1, 3), (2, 3)}. This relation
is “<”.

• A = {1, 2, 3}, S = {(1, 2), (1, 3), (2, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. This
relation is “6=”.

• A = {1, 2, 3}, S = {(1, 1), (2, 2), (3, 3)}. This relation is “=”.

Recall the following symbols. ∀: “for all”, ∃: “there exists”.

Definition 0.5. Let A be a set with a relation S. Then S is called an
equivalence relation if and only if

i. ∀x ∈ A : x ∼ x (reflexive)

ii. ∀x, y ∈ A : x ∼ y ⇔ y ∼ x (symmetric)

iii. ∀x, y, z ∈ A : (x ∼ y and y ∼ z)⇒ x ∼ z (transitive)

Example 0.6. Let A = Z. Let x ∼ y ⇔ ∃k ∈ Z : x− y = 5k. This defines
an equivalence relation.

i. reflexive: Let x ∈ Z. Then x− x = 0 = 5 · 0. Done.
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ii. symmetric: Let x, y ∈ Z with x ∼ y. Then x − y = 5k implies
y − x = 5 · (−k). Done.

iii. transitive: Let x, y, z ∈ Z with x ∼ y and y ∼ z. Then x−y = 5k1 and
y− z = 5k2 implies (by adding the two equalities) x− z = 5 · (k1 +k2).
Done.

0.2 Appendix B: Functions

Definition 0.7. Let A,B be sets. A function f : A → B is a rule that
associates to each element x ∈ A a unique element of B, denoted f(x). The
set A is called the domain, the set B is called the codomain.

Definition 0.8. • For S ⊆ A, f(S) = {f(x) : x ∈ S} (image of S under
f). f(A) is called the range.

• For T ⊆ B, f−1(T ) = {x ∈ A : f(x) ∈ T} (pre-image of T under f)

• f : A→ B = g : A→ B ⇔ ∀x ∈ A : f(x) = g(x)

Definition 0.9. • f : A → B is injective if and only if f(x) = f(y) ⇒
x = y.

• f : A→ B is surjective if and only if ∀b ∈ B∃a ∈ A : f(a) = b.

• For S ∈ A, the restriction of f to S is f |S : S → B, x 7→ f(x).

0.3 Appendix C: Fields

Definition 0.10. Let A be a set. A binary operation is any map A×A→ A.
We are very familiar with Q and R and the properties that the two binary
operations + and · have.

Definition 0.11. A field F is a set with two binary operations labelled +
and · such that

i. a+ b = b+ a, a · b = b · a (commutativity)

ii. (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) (associativity)

iii. ∃0 ∈ F : a+ 0 = a ∀a
∃1 ∈ F : 1 · a = a ∀a (neutral elements)
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iv. ∀a ∈ A : ∃b ∈ A : a+ c = 0

∀a ∈ A\{0} : ∃b ∈ A : a · b = 1 (inverse elements)

v. a · (b+ c) = a · b+ a · c (distributive law)

Theorem 0.12 (Cancellation Laws). Let F be a field and a, b, c ∈ F .

i. a+ b = c+ b⇒ a = c

ii. a · b = c · b and b 6= 0⇒ a = c

Proof. Part i. Let d be an additive inverse of b. Now, observe that (a+ b) +
d = a and (c+ b) + d = c. Done.

Part ii is done in detail in the textbook.

Proposition 0.13. The neutral element of addition is unique.

Proof. Let 0 and 0′ be two neutral elements of addition. Then

0 = 0 + 0′ = 0′.

Example 0.14. Some examples of fields.

• Q,R,C

• Q[
√

3] = {a+ b
√

3|a, b ∈ Q} (on Homework 1).

• Z/pZ when p is a prime.

0.4 Appendix D: Complex Numbers

Motivation: In R, x2 − 1 = 0 has two solutions, namely −1, 1. However,
the almost identical equation x2 + 1 = 0 has no solutions. This means that
the reals “leave something to be desired.” In response, we introduce the
imaginary unit i, which has the property i2 = −1.

Definition 0.15. A complex number is an expression of the form z = a+ bi
with a, b ∈ R. Sum and product are defined by

z + w = (a+ bi) + (c+ di) = a+ c+ (b+ d)i
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and
zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

Remark 0.16. Memorize the multiplication by multiplying out as one would
do naively, and then use i2 = −1. Do some examples!

Theorem 0.17. The complex numbers with sum and multiplication as above
form a field.

Proof. This just involves tedious checking of all the properties–you should
try a few yourself at home.

Remark 0.18. The multiplicative inverse of z = a+ bi is

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

=
a

a2 + b2
+ i

−b
a2 + b2

.

Definition 0.19. The complex conjugate of z = a+ bi is z̄ = a− bi.

Proposition 0.20. i. ¯̄z = z

ii. z + w = z̄ + w̄

iii. zw = z̄ · w̄

iv. z
w = z̄

w̄

Remark 0.21. It is now clear that there is a bijection C→ R2 via a+ bi 7→
(a, b). By Pythagoras’ Theorem, the length of a straight line from the origin
to the point (a, b) is

√
a2 + b2.

Definition 0.22. The absolute value (or modulus) of z = a + bi is |z| =√
a2 + b2.

Remark 0.23. We have

zz̄ = (a+ bi)(a− bi) = a2 + b2.

Thus,
|z| =

√
zz̄.

Properties 0.24. i. |zw| = |z||w|

ii.
∣∣ z
w

∣∣ = |z|
|w|
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iii. |z + w| ≤ |z|+ |w|

Theorem 0.25 (Fundamental Theorem of Algebra). Let p(z) = anz
n +

an−1z
n−1 + . . . + a1z + a0 be a complex polynomial (i.e., ai ∈ C). Then

∃z0 ∈ C : p(z0) = 0.

Proof. No proof is given here. This is a comparatively hard theorem to
prove.

1 Vector spaces

1.1 Introduction

Geometrically, a vector in, say, R2, is the datum of a direction and a mag-
nitude. Thus, it can be represented by an arrow which points in the given
direction and has the given length. Two vector can be added using the
parallelogram rule (see the textbook for some nice pictures explaining this).

Physically, the vectors may, e.g., represent forces that are exerted on an
object. The result of the addition is the resulting net force that the object
experiences when the original two forces are applied.

Algebraically, when v = (a1, a2) and w = (b1, b2), then v + w = (a1 +
b1, a2 + b2). Scalar multiplication is defined via t(a1, a2) = (ta1, ta2).

Definition 1.1. The vectors v and w are parallel if and only if ∃t ∈ R :
tv = w.

A vector can be interpreted as the displacement vector between its start
and end point. If the start point is (x1, x2) and the end point is (y1, y2),
then the displacement vector is (y1 − x1, y2 − x2).

Definition 1.2. The line through the points A = (x1, x2) and B = (y1, y2)
is

{(x1, x2) + t(y1 − x1, y2 − x2) : t ∈ R}.

Definition 1.3. The line through the points A = (x1, x2, x3) and B =
(y1, y2, y3) is

{(x1, x2, x3) + t(y1 − x1, y2 − x2, y3 − x3) : t ∈ R}.
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Definition 1.4. The plane through the pointsA = (x1, x2, x3), B = (y1, y2, y3)
and C = (z1, z2, z3) (not all three on a line) is

{(x1, x2, x3)+s(y1−x1, y2−x2, y3−x3)+t(z1−x1, z2−x2, z3−x3) : s, t ∈ R}.

Example 1.5. i. The line through (1, 1, 2) and (0, 3,−1) is

{(1, 1, 2) + t(−1, 2− 3) : t ∈ R}.

ii. The plane through the points A = (1, 0,−1), B = (0, 1, 2) and C =
(1, 1, 0) is

{(1, 0,−1) + s(−1, 1, 3) + t(0, 1, 1) : s, t ∈ R}.

Now, observe that vector addition and scalar multiplication satisfy cer-
tain laws, e.g., v + w = w + v, 1 · v = v, (ab)v = a(bv). Next, we will distill
these obvious properties into an abstract definition.

1.2 Vector Spaces

Definition 1.6. A vector space (or linear space) V over a field F (think
F = R, or C) is a set with a binary operation denoted “+” and a second
map · : F × V → V such that

i. ∀x, y ∈ V : x+ y = y + x

ii. ∀x, y, z ∈ V : (x+ y) + z = x+ (y + z)

iii. ∃0 ∈ V : ∀x ∈ V : x+ 0 = x

iv. ∀x ∈ V ∃y ∈ V : x+ y = 0

v. ∀x ∈ V : 1x = x, where 1 is the neutral element of multiplication in F

vi. ∀a, b ∈ F∀x ∈ V : (ab)x = a(bx)

vii. ∀a ∈ F∀x, y ∈ V : a(x+ y) = ax+ ay

viii. ∀a, b ∈ F∀x ∈ V : (a+ b)x = ax+ bx

Definition 1.7. The elements of F are called scalars. The elements of V
are called vectors. Because of item ii above, sums like x + y + z + w are
well-defined.
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Remark 1.8. To simplify typing, we will usually not adorn vectors with an
arrow, i.e., we will write x instead of ~x and 0 instead of ~0. Note that the
neutral element of addition in the field is also denoted with 0, but it should
always be clear from the context what is meant.

Quiz 1.
1. (5 points) Let f : A → B and g : B → C be two functions. Assume
that the composition g ◦ f is injective. Does this necessarily imply that f is
injective? Prove your answer.

2. (5 points) Let h : Z → Z be defined by x 7→ 2x + 4. Is h injective? Is h
surjective? Prove your answers.

Answer to 1. Yes. Let x, y ∈ A with f(x) = f(y). Apply g to both sides
of the equality. Then g(f(x)) = g(f(y)). Since g ◦ f is injective, we can
conclude x = y, qed.
Answer to 2. Injective: Yes. Let x, y ∈ Z with h(x) = h(y). Then 2x+ 4 =
2y + 4. Subtracting 4 on both sides and then dividing by 2 yields x = y,
q.e.d. Surjective: No. For an arbitrary x ∈ Z, h(x) = 2x + 4 is clearly an
even integer. Therefore the range of h cannot be Z, q.e.d.

Example 1.9. i. (THE example, see later section on isomorphisms) Take
a field F . (We will mostly just take R, or perhaps C.) An n-tuple is
(a1, . . . , an), where a1, . . . , an ∈ F . Note that {n-tuples} ∼= Fn natu-
rally. Define (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn). Also,
c(a1, . . . , an) = (ca1, . . . , can) for c ∈ F .

ii. Matm,n(F ) is a vector space with componentwise addition and scalar
multiplication

The following examples of vector spaces are substantially different from
the examples above. They are “infinite dimensional,” more about that later.

Example 1.10. i. Let S be a set of real numbers Let F be the set of
all real-valued functions on S. Then F is a vector space (over R) with
the usual addition and scalar multiplication of real-valued functions.

ii. Let S now be an interval of reals. Consider in F only those functions
that are continuous. This is also a vector space (use the summation
theorem for continuous functions from calculus)

iii. Consider in F only those functions that are differentiable. This is also
a vector space (use the summation theorem for differentiable functions
from calculus)

9



iv. Assume that x0 ∈ S. Then {f : S → R | f(x0) = 0} is a vector space.
(check it!). {f : S → R | f(x0) = 1} is not!

Again, we would like to infer more properties of vector spaces from the
original list of 8 properties. To start, we observe that the zero vector is
unique, with the same proof as in the case of fields in the Introduction.
Moreover, we also have a cancellation law:

Theorem 1.11 (Cancellation law for vector spaces). Let V be a vector space
and x, y, z ∈ V . If x+ z = y + z, then x = y.

Proof. Let v be such that z + v = 0 (condition iv). Then

x = x+ 0 = x+ (z + v) = (x+ z) + v

= (y + z) + v = y + (z + v) = y + 0 = y

due to conditions ii and iii.

Corollary 1.12. The additive inverse is unique.

Theorem 1.13. Let V be a vector space. Then the following statements are
true.

i. ∀x ∈ V : 0x = ~0

ii. ∀x ∈ V ∀a ∈ F : (−a)x = −(ax) = a(−x)

iii. ∀a ∈ F : a~0 = ~0

Proof. The textbook has detailed proofs of i and ii. The item iii is left to
the reader.

1.3 Subspaces

Definition 1.14. A subset W of a vector space V over the field F is called
a subspace of V if W is a vector space with + and scalar multiplication from
V .

Example 1.15. • {~0}, V

• R2 ∼= {(a, b, 0)|a, b ∈ R} ⊂ R3
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• The above examples 1.10ii and 1.10iii in 1.10i.

In order to verify that W is a subspace of V , it is not necessary to
check all the vector space axioms in the definition of a vector space. For
example, the restricted addition is clearly commutative since it was already
commutative before the restriction.

Theorem 1.16. A nonempty subset W of the vector space V is a subspace
of V if and only if

i. ∀x, y ∈W : x+ y ∈W (closedness under +)

ii. ∀c ∈ F∀x ∈W : c · x ∈W (closedness under scalar multiplication)

Proof. First, observe that the implication ⇒ is trivial. The proof of the
other direction consists of some easy verifications. For example, let’s see
why ~0 ∈W : Take an arbitrary element x of W . Since W is nonempty, such
an element exists. Now, simply observe that 0 · x = ~0, which is an element
of W by ii. The remaining details are left to the reader.

More examples:

Example 1.17. • Let W = {(a, b)|a + b = 0} ⊂ R2. Closedness under
+ is checked as follows. Let (a, b), (c, d) ∈ W . Then the result of the
addition is (a+c, b+d), which satisfies (a+c)+(b+d) = (a+b)+(c+d) =
0+0 = 0. Closedness under scalar multiplication is seen as follows. Let
(a, b) ∈W and c a scalar. Then the result of the scalar multiplication
is (ca, cb), which satisfies ac+ cb = c(a+ b) = c0 = 0.

• Let W = {(a, b, c)|3a− b+ 2c = 0} ⊂ R3. Check it as in i.

• What aboutW = {(a, b, c)|3a−b+2c = 1} ⊂ R3? Let (a, b, c), (d, e, f) ∈
W . Then the result of their addition is (a+d, b+e, c+f), which satis-
fies 3(a+d)−b−e+2(c+f) = 3a−b+2c+3d−e+2f = 1+1 = 2 6= 1.
Thus, W is not closed under addition and not a subspace.

• Let W = {(a, b)|a2 − b2 = 0} ⊂ R2. The subset W is not a subspace
because, for example, (1, 1) and (2,−2) are elements of W , but (1, 1)+
(2,−2) = (3,−1) is not, due to 32 − (−1)2 = 8 6= 0.

• Any intersection of subspaces in a vector space is itself a subspace.
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A major class of examples is given by sums and direct sums of subspaces.

Definition 1.18. Let V be a vector space. Let S, T be nonempty subsets
of V . Then let S + T = {x + y|x ∈ S, y ∈ T}. We call S + T the sum of S
and T .

Definition 1.19. Let V be a vector space. Let W,U be subspaces of V .
Then we call V the direct sum of W,U if W + U = V and W ∩ U = {0}.
Write V = W ⊕ U .

Proposition 1.20. Let V be a vector space. Let W,U be subspaces of V .
Then the sum W + U is a subspace of V (containing both W and U).

Proof. (w1 + u1) + (w2 + u2) = (w1 + w2) + (u1 + u2), which is the sum of
a vector in W , namely w1 + w2, and a vector in U , namely u1 + u2. Thus,
W +U is closed under addition. The closedness under scalar multiplication
is completely analogous.

Example 1.21. • {(a, b, 0, c)|a, b, c ∈ R} + {(d, 0, e, f)|d, e, f ∈ R} =
R4. But this is not a direct sum.

• {(a, 0, 0, b)|a, b ∈ R}⊕{(0, c, d, 0)|c, d ∈ R} = R4. This is a direct sum.

• {(a, 0, 0)|a ∈ R} ⊕ {(0, b, 0)|b ∈ R} = {(a, b, 0)|a, b ∈ R}

Quiz 2:

1. (5 points) Let V be a vector space and let W1,W2 be subspaces of V .
Prove that the intersection W1 ∩W2 is a subspace of V .

2. (5 points) Let V be the vector space of 2 × 2 matrices with real entries.
(You may assume without proof that V is a vector space with the usual com-
ponentwise addition and scalar multiplication.) Recall that the determinant
of such a matrix is defined to be

det

(
a b
c d

)
:= ad− bc.

Let W be the subset of V consisting of those matrices whose determinant is
equal to 0. Is W a subspace of V ? Prove your answer.

Solution:

1. We need to prove that W1 ∩W2 is non-empty, closed under addition and
closed under scalar multiplication.
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• Being subspaces, both W1 and W2 contain the zero-vector ~0. So ~0 ∈
W1 ∩W2 6= ∅.

• Let v, w ∈W1 ∩W2. In particular, v, w ∈W1 and by the closedness of
W1 under addition, v+w ∈W1. Also, v, w ∈W2 and by the closedness
of W2 under addition, v + w ∈W2. Altogether, v + w ∈W1 ∩W2.

• Let v ∈W1 ∩W2 and c ∈ F . In particular, v ∈W1 and by the closed-
ness of W1 under scalar multiplication, cv ∈W1. Also, v ∈W2 and by
the closedness of W2 under scalar multiplication, cv ∈W2. Altogether,
cv ∈W1 ∩W2.

2. No! Simply observe that

(
1 0
0 0

)
∈W and

(
0 0
0 1

)
∈W , but(

1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
6∈W.

This counterexample shows that W is not closed under +.

1.4 Linear Combinations and systems of linear equations

Definition 1.22. Let V be a vector space and S a nonempty subset of V .
We call v ∈ V a linear combination of vectors in S if there exist vectors
u1, . . . , un ∈ S and scalars a1, . . . , an ∈ F such that v = a1u1 + . . .+ anun.

Example 1.23. • (3, 4, 1) = 3(1, 0, 0) + 4(0, 1, 0) + 1(0, 0, 1).

• If we want to write (3, 1, 2) as a linear combination of (1, 0, 1), (0, 1, 1), (1, 2, 1),
how do we find the coefficients a1, a2, a3? Answer: Make the Ansatz

(3, 1, 2) = a1(1, 0, 1) + a2(0, 1, 1) + a3(1, 2, 1)

and solve the system of linear equations

a1 + a3 = 3, a2 + 2a3 = 1, a1 + a2 + a3 = 2.

Solution: a1 = 2, a2 = −1, a3 = 1.

• Find the ai in a given situation may or may not be possible. E.g.,
writing

(3, 1, 2) = a1(1, 0, 0) + a2(0, 1, 0) + a3(1, 2, 0)

is clearly impossible.

13



• There may be many choices for the ai:

(2, 6, 8) = a1(1, 2, 1)+a2(−2,−4,−2)+a3(0, 2, 3)+a4(2, 0,−3)+a5(−3, 8, 16)

is equivalent to

(a1, a2, a3, a4, a5) ∈ {(−4 + 2s− t, s, 7− 3t, 3 + 2t, t)|s, t ∈ R}.

(There are two “free variables”.)

There are three types of operations that we used to solve the above
systems of linear equations:

i. Interchange the order of any two equations.

ii. Multiply an equation by a nonzero scalar.

iii. Add one equation to another.

Key point: These operations do not change the set of solutions.

Definition 1.24. Let V be a vector space. Let S be a nonempty subset of
V . We call span(S) the set of all vectors in V that can be written as a linear
combination of vectors in S.

Example 1.25. Let S = {(1, 0, 0), (0, 1, 0), (2, 1, 0)}. Then span(S) =
{(s, t, 0)|s, t ∈ R}.

Theorem 1.26. The span of any subset S of a vector space V is a subspace
of V .

Proof. Let v = a1u1 + . . . + anun ∈ span(S). Then cv = (ca1)u1 + . . . +
(can)un ∈ span(S). Thus, closedness under scalar multiplication is ok.

Let v = a1v1 + . . . + anvn ∈ span(S) and let w = b1w1 + . . . + bmwm ∈
span(S). Then

v + w = a1v1 + . . .+ anvn + b1w1 + . . .+ bmwm.

Thus, closedness under addition is ok.

Example 1.27. • S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R3.

• S = {(1, 2), (2, 1)} spans R2.
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• S = {(1, 1), (2, 2)}. span(S) = {(s, s)|s ∈ R} 6= R2.

• S = {(1, 2)} does not span R2.

• Which (a, b, c) are in span({(1, 1, 2), (0, 1, 1), (2, 1, 3)})? Answer: Those
that satisfy a+ b = c.

1.5 Linear dependence and linear independence

Motivation: Let W be a subspace of V . We are interested in a set S ⊂ W
such that span(S) = W and S is “as small as possible”.

Definition 1.28. A subset S of a vector space V is called linearly dependent
if there exist a finite number of vectors u1, . . . , un ∈ S and scalars a1, . . . , an,
not all equal to zero, such that

a1u1 + . . .+ anun = 0.

We also say that the vectors in S are linearly dependent.

Quiz 3: (10 points) Find the condition(s) for (a, b, c, d) ∈ R4 to be in

span{(1, 0, 1,−1), (−1,−2,−1,−1), (0, 1, 0, 1), (1, 3, 1, 2)}.

Solution:

Make the Ansatz

a1(1, 0,−1, 1) +a2(−1,−2,−1,−1) +a3(0, 1, 0, 1) +a4(1, 3, 1, 2) = (a, b, c, d).

We have to determine for which values of a, b, c, d the above system is con-
sistent, i.e., solvable. Reducing this system to echelon form yields:

a1 − a2 + a4 = a

−2a2 + a3 + 3a4 = b

0 = c− a
0 = d+ a− b

It is now clear that the system is consistent if and only if c = a and b = a+d.
Done.
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Example 1.29. Let S = {(1, 3,−4, 2), (2, 2,−4, 0), (1,−3, 2−4), (−1, 0, 1, 0)}.
Then

4(1, 3,−4, 2)− 3(2, 2,−4, 0) + 2(1,−3, 2− 4) + 0(−1, 0, 1, 0) = (0, 0, 0, 0).

Thus, S is linearly dependent.

Definition 1.30. If S is not linearly dependent, we say S is linearly inde-
pendent.

Remark 1.31. Linear independence is equivalent to: “
∑
aivi = ~0 ⇒

all ai = 0”.

Remark 1.32. The empty set ∅ is linearly independent. The singleton set
{v} is linearly independent if and only if v 6= ~0.

Theorem 1.33. Let V be a vector space. If S1 ⊆ S2 and S1 is linearly
dependent, then S2 is linearly dependent.

Proof. This is immediate from the definition.

Theorem 1.34. Let S be a linearly independent subset of V . Let v ∈ V \S.
Then S ∪ {v} is linearly dependent if and only if v ∈ span(S).

Proof. “⇒”. Write a1u1 + . . . + anun + an+1v = 0 with not all ai equal to
zero and ui ∈ S.

Claim: an+1 6= 0.

Proof of claim: If an+1 = 0, then at least one of a1, . . . , an is not equal
to zero and a1u1 + . . .+ anun = 0. Contradiction to linear independence of
S.

So, an+1 6= 0, and we can write v = −a1
an+1

u1 + . . .+ −an
an+1

un, qed.

“⇐”. Write v = a1u1 + . . .+ anun. Then a1u1 + . . .+ anun + (−1)v = 0.
Thus, S ∪ {v} is linearly dependent, qed.

1.6 Bases and dimension

Definition 1.35. Let V be a vector space. A basis β is a linearly indepen-
dent subset of V which satisfies span(β) = V .
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Theorem 1.36. Let V be a vector space. Let β = {u1, . . . , un} be a subset
of V . Then

β is a basis ⇔ ∀v ∈ V : ∃! a1, . . . , an ∈ F : v = a1u1 + . . .+ anun.

(Recall that ∃! means unique existence.)

Proof. “⇒”. Spanning property is already known. We just have to prove
uniqueness.

Let
a1u1 + . . .+ anun = v = b1u1 + . . .+ bnun.

This implies
(a1 − b1)u1 + . . .+ (an − bn)un = 0.

Linear independence implies a1 − b1 = 0, . . . , an − bn = 0. Done.

“⇐”. Spanning property is already known. To show lin. indep., just
observe that

a1u1 + . . .+ anun = 0

is solved by the trivial solution a1 = . . . = an = 0. However, by assumption,
this is the only solution. Thus, we have established linear independence.
Done.

Theorem 1.37. Let V be a vector space. Let S be a finite subset of V with
span(S) = V . Then there exists a subset of S which is a basis for V . In
particular, V has a finite basis.

Proof. We conduct this proof by induction over the cardinality of S.

If #S = 1, then S = {v}, and S is clearly linearly independent (unless
we are in a trivial cases).

Now, assume that we know the theorem for #S = n. We have to prove
it for #S = n+ 1.

If S is not a basis, then S is lin. dep. Claim: ∃v ∈ S : V = span(S) =
span(S \ {v}). Proof of Claim: lin. dep. means that there is a linear
combination

a1u1 + . . .+ anun = 0

with some ai0 6= 0. We can solve the above equation for ui0 . It is now clear
that a linear combination of the vectors u1, . . . , un can be expressed as a
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linear combination of the vectors u1, . . . , ui0−1, ui0+1, . . . un. Thus, letting
v = ui0 establishes the Claim.

If we let S̃ = S \ {ui0}, then we can apply the induction hypothesis to
obtain that S̃ contains a basis. Since S̃ ⊂ S, we can conclude that S contains
a basis. Done.

Example 1.38. • Let S = {(1, 0), (1, 1), (2, 3)}. Observe that S spans
R2, but S is lin. dep. After removing any one of the three vectors from
S, we obtain a basis.

• Let S = {(1, 0), (0, 1), (0, 2)}. Observe that S spans R2, but S is lin.
dep. After removing the second or third vector, we obtain a basis.
However, removing the first vector does not yield a basis.

• Let S = {(2,−3, 5), (8,−12, 20), (1, 0,−2), (0, 2,−1), (7, 2, 0)}. Observe
that S spans R3, but S is lin. dep.. Consider the span of the first vec-
tor. Obviously, the span remains unchanged after adding the second
vector (which is 4 times the first), so the second vector should be re-
moved. The third vector is not a multiple of the first, so we keep it.
A direct computation shows that the first, third and fourth vector are
lin. indep. and span R3. The fifth can be disregarded.

Theorem 1.39 (Replacement Theorem). Let V be a vector space. Let V =
span(G), where G is a subset of V of cardinality n. Let L be a linearly
independent subset of V of cardinality m. Then the following holds.

• m ≤ n

• there exists a subset H ⊆ G of cardinality n −m such that span(L ∪
H) = V

Remark 1.40. A typical situation is for example m = 2 and n = 5, i.e.,
L = {v1, v2} and G = {w1, w2, w3, w4, w5}. The replacement theorem now
says that there are two vectors in G that can be replaced with the two
vectors from L such that the set obtained by the replacement still spans V .
In other words, L can be injected into G and the result still spans V .

Corollary 1.41. Let V be a vector space with a finite basis. Then all bases
contain the same number of elements.

Proof. Let β basis of cardinality m and γ basis of cardinality n. Since β lin.
indep. and γ spans, we have m ≤ n. By symmetry, we have m = n.
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Definition 1.42. A vector space is called finite dimensional if there exists
a basis consisting of finitely many vectors. The unique cardinality of a basis
of a finite dimensional vector space is called the dimension of V , denoted
dim(V ).

Example 1.43. dim(Rn) = n, dim(Matm×n) = mn. (Consider the stan-
dard bases.)

Here are some more Corollaries.

Corollary 1.44. Let V be a vector space of dimension n. Then any gener-
ating set S of V contains at least n elements.

Proof. By Theorem 1.37, S contains a basis. By Corollary 1.41, that basis
has n elements. So S contains at least n elements.

Corollary 1.45. Let V be a vector space and S ⊂ V a subset. If V =
span(S) and #S = dim(V ), then S is a basis.

Proof. By Theorem 1.37, S contains a basis. This basis must have dimV =
#S elements. Thus, this basis is S itself.

Corollary 1.46. Let V be a vector space and S ⊂ V a subset. If S is lin.
indep. and #S = dim(V ), then S is a basis.

Proof. Take any basis G. Apply the Replacement Theorem with G and L =
S. Since #G = #S = dimV , we have H = ∅ and V = spanG = spanS.

Corollary 1.47. Let V be a vector space. Every lin. indep. subset S of V
can be extended to a basis.

Proof. Take any basis G of V . Apply the Replacement Theorem with S = L
and G.

Finally, let us prove the Replacement Theorem.

Proof of Replacement Theorem. For a fixed n = #G, we do induction over
#L = m.

For m = 0, we have L = ∅. Take H = G. Done.
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Induction step: “m→ m+ 1”.

Let L = {v1, . . . , vm+1}, let L̃ = {v1, . . . , vm}.

Induction hypothesis ⇒ ∃H̃ = {u1, . . . , un−m} such that V = span(L̃ ∪
H̃).

Write

vm+1 = a1v1 + . . .+ amvm + b1u1 + . . .+ bn−mun−m. (1)

Since L is lin. indep. we know that there exists i such that bi 6= 0. Thus
n−m > 0, i.e., n ≥ m+ 1. This proves the first part of the claim for m+ 1.

It remains to show that if, w.l.o.g., b1 6= 0, then H = {u2, . . . , un−m}
works, i.e., V = span(L ∪ H). Let v ∈ V be arbitrary. We know we can
write

v = α1v1 + . . .+ αmvm + γ1u1 + . . .+ γn−mun−m. (2)

If we solve (1) for u1 and substitute into (2), we see that v can be written
as a linear combination of v1, . . . , vm+1, u2, . . . , un−m. Done.

Now, let us discuss the dimension of subspaces.

Theorem 1.48. Let V be a vector space. Let W be a subspace of V . Assume
dimV is finite. Then dimW ≤ dimV and equality holds if and only if
V = W .

Proof. This is immediate from the Replacement Theorem.

In the following examples, the task is to find a basis for (and the dimen-
sion of) the subspace W .

Example 1.49.

• Let V = R3. Let W = {(a1, a2, a3) | a1 +a3 = 0 and a1 +a2−a3 = 0}.
Solving the system

a1 + a3 = 0 and a1 + a2 − a3 = 0

yields W = {(−t, 2t, t) | t ∈ R}. Thus {(−1, 2, 1)} is a basis, and the
dimension of W is one.
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• Let V = R5. Let W = {(a1, a2, a3, a4, a5) | a1 + a3 + a5 = 0 and a2 =
a4}. Solving the system

a1 + a3 + a5 = 0 and a2 = a4

yields

W = {(−a3 − a5, a4, a3, a4, a5) | a3, a4, a5 ∈ R}
= {a3(−1, 0, 1, 0, 0) + a4(0, 1, 0, 1, 0) + a5(−1, 0, 0, 0, 1)| a3, a4, a5 ∈ R}

Thus {(−1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (−1, 0, 0, 0, 1)} is a basis for W , and
the dimension of W is three.

Quiz 4:

(10 points) Let u, v, w be pairwise distinct vectors in a vector space V . Prove
that if {u, v, w} is a basis for V , then {u + v + w, v + w,w} is also a basis
for V .

Solution:

Since {u, v, w} has 3 elements, we know that dimV = 3. By a corollary to
the Replacement Theorem, a set of 3 vectors is a basis of V if and only if
the 3 vectors are linearly independent. So let’s check this:

Ansatz:
a(u+ v + w) + b(v + w) + cw = ~0.

This is equivalent to

au+ (a+ b)v + (a+ b+ c)w = ~0.

Since u, v, w are linearly independent, we know that the coefficients a =
a+ b = a+ b+ c = 0. This clearly implies a = b = c = 0, qed.

2 Linear transformations and matrices

2.1 Linear transformations, null spaces, and ranges

Definition 2.1. Let V,W be vector spaces over the same field F . We call
a function T : V →W a linear transformation from V to W if
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i. ∀x, y ∈ V : T (x+ y) = T (x) + T (y)

ii. ∀c ∈ F∀x ∈ V : T (cx) = cT (x)

Remark 2.2. We say T is linear for short.

Properties 2.3. • T (~0) = ~0

• T (x− y) = T (x)− T (y)

• T (a1v1 + . . .+ anvn) = a1T (v1) + . . .+ anT (vn)

Example 2.4. • T (a1, a2) = (2a1 + a2, a1) (Check it!)

• T : R5 → R7, T (a1, . . . , a5) = (a1, a2, 0, a7, 0, 0, a1)

• T : C∞(R)→ C∞(R), T (f) = df
dx

Definition 2.5. LetV,W be vector spaces. Let T : V → W linear. We
define the null space (aka kernel) of T to be

N(T ) = {x ∈ V : T (x) = ~0}.

Remark 2.6. Recall that the range of T is

R(T ) = {T (x) : x ∈ V }.

Example 2.7. Let T : R3 → R2, T (a1, a2, a3) = (a1 − a2, 2a3). To find the
null space, set

T (a1, a2, a3) = (0, 0)⇔ a1 − a2 = 0 and 2a3 = 0.

The solution of the above system of two equations in three variables is

N(T ) = {(t, t, 0)|t ∈ R}.

Moreover, it is clear that T is onto, so R(T ) = R2.

Theorem 2.8. Let V,W be vector spaces and T : V →W linear. Then

i. N(T ) is a subspace of V

ii. R(T ) is a subspace of W
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Proof. i. N(T ) is non-empty because ~0 ∈ N(T ). Now, we just have to check
closedness. If T (x) = 0 and T (y) = 0, then T (ax + by) = aT (x) + bT (y) =
0 + 0 = 0. Done.

ii. Again, just closedness. If T (x) = v1 and T (y) = v2, then av1 + bv2 =
aT (x) + bT (y) = T (ax+ by). Done.

Theorem 2.9. Let V,W be vector spaces and T : V → W linear. Let
{v1, . . . , vn} be a basis for V . Then R(T ) = span{T (v1), . . . , T (vn)}.

Proof. Let v = a1v1 + . . . + anvn. Then T (v) = T (a1v1 + . . . + anvn) =
a1T (v1) + . . .+ anT (vn) ∈ span{T (v1), . . . , T (vn)}. Done.

Example 2.10. Problem: Find (a basis for)R(T ) when T : R3 → R3, T (a1, a2, a3) =
(a1 − 2a2, a2 + a3, 2a1 + a2 + 5a3).

First, we note T (1, 0, 0) = (1, 0, 2), T (0, 1, 0) = (−2, 1, 1), T (0, 0, 1) =
(0, 1, 5). Thus, according to Theorem 2.9, R(T ) = span{(1, 0, 2), (−2, 1, 1), (0, 1, 5)}.
Now, note that twice the first vector plus the second equals the third, so
R(T ) = span{(1, 0, 2), (−2, 1, 1)}. The set {(1, 0, 2), (−2, 1, 1)} is clearly a
basis for R(T ), and dimR(T ) = 2.

Note thatN(T ) is easily computed to be one-dimensional, and dimN(T )+
dimR(T ) = 3.

Definition 2.11. Let V,W be vector spaces and T : V → W linear. If
N(T ), R(T ) are finite dimensional, then let

nullity(T ) = dimN(T ), rank(T ) = dimR(T ).

Theorem 2.12 (Dimension Theorem). Let V,W be vector spaces and T :
V →W linear. If V is finite-dimensional, then

nullity(T ) + rank(T ) = dimV.

Proof. Let {v1, . . . , vk} be a basis for N(T ). In particular, k = nullity(T ).
Let n = dimV . The Replacement Theorem implies that there are vectors
vk+1, . . . , vn ∈ V such that {v1, . . . , vn} is a basis for V .

Claim: {T (vk+1), . . . , T (vn)} is a basis for R(T ).

Spanning: Let v = a1v1 + . . .+ anvn ∈ V arbitrary. Then

T (v) = a1T (v1) + . . .+ akT (vk) + ak+1T (vk+1) + . . .+ anT (vn).
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However, the first k summands are zero due to v1, . . . , vk ∈ N(T ).

Lin. indep.: Write

bk+1T (vk+1) + . . .+ bnT (vn) = 0.

We have to conclude bk+1 = . . . = bn = 0. To do this, note that bk+1T (vk+1)+
. . .+ bnT (vn) = T (bk+1vk+1 + . . .+ bnvn), i.e., bk+1vk+1 + . . .+ bnvn ∈ N(T ).
Thus, there exist a1, . . . , ak :

a1v1 + . . .+ akvk = bk+1vk+1 + . . .+ bnvn.

Since {v1, . . . , vn} is a basis for V and thus lin. indep., this is only possible
if

a1 = . . . = ak = bk+1 = . . . = bn = 0.

Theorem 2.13. Let V,W vector spaces. Let T : V →W linear. Then T is
one-to-one if and only if N(T ) = {~0}.

Proof. ⇒. Saw: T (~0) = ~0. Since T is one-to-one, this implies N(T ) = {~0}.

⇐. Assume T (x) = T (y). Then T (x) − T (y) = 0. By linerity of T ,
T (x− y) = ~0. By assumption, x− y = ~0. Done.

Quiz 5:

i. (5 points) Carefully state the Dimension Theorem, as discussed in
class. Be sure to define in detail the terms appearing in the formula.
Do NOT provide a proof.

ii. (2 points) Let V,W be vector spaces and T : V → W a linear trans-
formation. Prove that T is injective if and only if the null space of T
is the zero vector space. (This was discussed as Theorem 2.4 in class.
I am asking you to reproduce the proof.)

iii. (3 points) Let V,W be vector spaces and T : V → W a linear trans-
formation. Let dimV = dimW <∞. Prove that T is injective if and
only if T is surjective.
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Solution:

(a) See above
(b) See above
(c) “⇒” T injective implies nullity(T ) = 0. The formula in the Dimension
Theorem thus becomes rank(T ) = dimV = dimW . Therefore, Range(T ) is
a subspace of W of the same dimension as W . This implies Range(T ) = W ,
i.e., T is surjective.
“⇐” The formula in the Dimension Theorem yields nullity(T ) = 0. There-
fore, the null space of T is the zero vector space. By (b), T is injective.

Theorem 2.14. Let V,W vector spaces. Let {v1, . . . , vn} be a basis for V .
Let w1, . . . , wn be a list of arbitrary vectors in W . Then there exists a unique
T : V →W linear such that T (vi) = wi for all i = 1, . . . , n.

Proof. Recall that an arbitrary v ∈ V can be written as v =
∑

i aivi with
unique coefficients ai. Then set T (v) =

∑
i aiwi. It is easy to check that this

defines a well-defined linear map as required in the Theorem. Uniqueness is
also clear.

Corollary 2.15. Let V,W vector spaces. Let U, T : V → W linear with
U(vi) = T (vi) on a basis {v1, . . . , vn} for V . Then U = T .

2.2 The matrix representation of a linear transformation

Definition 2.16. Let V be a finite dimensional vector space. An ordered
basis for V is a basis endowed with a specific order.

Example 2.17. As ordered bases,

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} 6= {(0, 1, 0), (1, 0, 0), (0, 0, 1)}.

Definition 2.18. Let β = {u1, . . . , un} ordered basis for V . We saw earlier:

∀x ∈ V ∃!a1, . . . , an : x = a1u1 + . . .+ anun.

Write
[x]β = (a1, . . . , an)

for the coordinate vector of x relative to β. In particular, [ui]β = ei.
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Definition 2.19. Take V with β = {v1, . . . , vn}, W with γ = {w1, . . . , wm}.
Let T : V →W linear. Write

T (vj) =
m∑
i=1

aijwi

for j = 1, . . . , n. Call the matrix (aij) the matrix representation of T with
respect to β and γ. When V = W and β = γ, write A = [T ]β.

Remark 2.20. The key fact to remember is that the j-th column of the
matrix representation is [T (vj)]γ .

Example 2.21. (a) Let T : R2 → R3 be given by T (a1, a2) = (a1 +
3a2, 0, 2a1 − 4a2). Let β and γ be the respective standard bases. Then

T (1, 0) = (1, 0, 2), T (0, 1) = (3, 0,−4).

Thus,

[T ]γβ =

1 3
0 0
2 −4

 .

(b) Same map, but with γ′ = {e2, e1, e3}:

[T ]γ
′

β =

0 0
1 3
2 −4

 .

(c) Same map as in (a), but with β′ = {e2, e1}:

[T ]γβ′ =

 0 0
3 1
−4 2

 .

(d) Let T : R2 → R3 be given by T (a1, a2) = (a1−a2, a1, 2a1 +a2). Let β be
the standard basis and γ = {(1, 1, 0), (0, 1, 1), (2, 2, 3)}. By solving a system
of linear equations, we find

T (1, 0) = (1, 1, 2) = −1

3
(1, 1, 0) +

2

3
(2, 2, 3),

and
T (0, 1) = (−1, 0, 1) = −(1, 1, 0) + (0, 1, 1).

Thus,

[T ]γβ =

−1
3 −1

0 1
2
3 0

 .
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Definition 2.22. Let U, T : V →W be linear. Then

(U + T )(x) = U(x) + T (x)

and
(cT )(x) = cT (x).

Theorem 2.23. Let V,W be given vector spaces. The set of all linear trans-
formations V → W is a vector space with + and · defined as above. Write
L(V,W ) for this vector space. Write L(V ) for L(V, V ).

Proof. Check the axioms!

Definition 2.24. Let U, T : V →W linear. Then

i. [U + T ]γβ = [U ]γβ + [T ]γβ

ii. [aT ]γβ = a[T ]γβ

Proof. Write U(vj) =
∑
aijwi, T (vj) =

∑
bijwi. Then

(U + T )(vj) = U(vj) + T (vj) =
∑

aijwi +
∑

bijwi =
∑

(aij + bij)wi.

Thus, the ij entry of [U + T ]γβ is aij + bij .

2.3 Composition of linear transformations and matrix mul-
tiplication

Theorem 2.25. Let V,W,Z be vector spaces over the same field. Let T :
V →W and U : W → Z be linear. Then U ◦ T : V → Z is linear.

Proof.

(U◦T )(ax+by) = U(T (ax+by)) = U(aT (x)+bT (y)) = aU(T (x))+bU(T (y))

= a(U ◦ T )(x) + b(U ◦ T )(y).

Theorem 2.26. Let U, S, T : V → V linear. Then

• U ◦ (S + T ) = U ◦ S + U ◦ T
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• (U + S) ◦ T = U ◦ T + S ◦ T

• U ◦ (S ◦ T ) = (U ◦ S) ◦ T

• id ◦U = U ◦ id = U

• a(U ◦ S) = (aU) ◦ S = U ◦ (aS)

Now, let us investigate the matrix of a composition of linear transfor-
mations. Let T : V → W , U : W → Z. Let α = {vj |j = 1, . . . , n}, β =
{wk|k = 1, . . . ,m}, γ = {zi|i = 1, . . . , p} be the corresponding ordered basis,

in alphabetical order. Let [T ]βα = B, [U ]γβ = A. Then

(U ◦ T )(vj) = U(T (vj)) = U(
∑
k

bkjwk) =
∑
k

bkjU(wk) =

∑
k

bkj(
∑
i

aikzi) =
∑
i

(
∑
k

aikbkj)zi.

Consequently, if C = [U ◦ T ]γα, cij =
∑

k aikbkj .

Definition 2.27. Let A be a p×m matrix and B an m× n matrix. Define
the matrix product of A and B to be the p× n matrix given by

(AB)ij =

m∑
k=1

aikbkj ,

where i = 1, . . . , p, j = 1, . . . , n.

We have just established the following theorem.

Theorem 2.28. Let T : V →W , U : W → Z. Then [U ◦ T ]γα = [U ]γβ[T ]βα.

Theorem 2.29. Let A ∈ Matm×n, B, C ∈ Matn×p, D,E ∈ Matq×m. Then

i. A(B + C) = AB +AC

ii. (D + E)A = DA+ EA

iii. a(AB) = A(aB) = (aA)B

iv. ImA = AIn
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Theorem 2.30. Let T : V →W linear. Then ∀v ∈ V :

[T (v)]γ = [T ]γβ[v]β.

Proof. I find the proof in the book somewhat uninformative. Here is an
alternative. By linearity, it is clear that we have to check the identity only
on the elements of the basis β = {v1, . . . , vn}.

First, note that

[T (vj)]γ = [a1jw1 + . . .+ amjwm]γ = (a1j , . . . , amj).

On the other hand,

[T ]γβ[vj ]β = [T ]γβej = (a1j , . . . , amj).

Done.

Definition 2.31. Let A ∈ Matm×n(F ). Define LA : Fn → Fm by LA(x) =
Ax. LA is the left-multiplication transformation given by the matrix A.

Theorem 2.32. Let β, γ be the standard ordered bases.

i. LA : Fn → Fm is linear.

ii. [LA]γβ = A

iii. LA = LB ⇔ A = B

iv. LA+B = LA + LB, LaA = aLA

v. For T : Fn → Fm, T = L[T ]γβ

2.4 Invertibility and Isomorphisms

Definition 2.33. Let V,W be vector spaces. Let T : V → W linear. We
define U : W → V to be the inverse of T if T ◦ U = idW and U ◦ T = idV .
If T has an inverse, T is called invertible.

Remark 2.34. If T has an inverse, the inverse is certainly unique. We write
T−1 for it. Recall that in general, for sets A,B, a function f : A → B is
invertible if and only if f is one-to-one and onto.
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Theorem 2.35. If T : V → W is linear and invertible, then the inverse
T−1 is linear also.

Proof. Let w1, w2 ∈W , a ∈ F . Since T is in particular onto, for some v1, v2

the following holds:

T−1(w1 + w2) = T−1(T (v1) + T (v2)) = T−1(T (v1 + v2)) =

v1 + v2 = T−1(w1) + T−1(w2).

Moreover,

T−1(aw1) = T−1(aT (v1)) = T−1(T (av1)) = av1 = aT−1(w1).

Lemma 2.36. Let T : V → W linear and invertible. Let V,W be finite
dimensional. Then

dimV = dimW.

Proof. The dimension formula says rank(T ) = dimV since nullity(T ) = 0
due to T being one-to-one. But rank(T ) ≤ dimW always. Thus, dimV ≤
dimW . By symmetry, we are done.

Definition 2.37. Let A be an n × n matrix. Say A is invertible if there
exists an n× n matrix B such that

AB = In = BA.

Remark 2.38. Such a B is unique, if it exists. Reason: Let B,C be two
matrices with the above property. Then

C = CIn = C(AB) = (CA)B = InB = B.

Thus, we can write A−1 for B.

Theorem 2.39. Let V,W be finite dimensional vector spaces with ordered
bases β, γ respectively. Let T : V → W linear. Then T is invertible if
and only if [T ]γβ is an invertible matrix. Moreover, in this case, [T−1]βγ =

([T ]γβ)−1.
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Proof. Based on:

In = [idV ]ββ = [T−1 ◦ T ]ββ = [T−1]βγ [T ]γβ.

See the textbook for complete details.

Definition 2.40. Let V,W be vector spaces. Say V is isomorphic to W if
and only if there exists T : V →W linear and invertible. Such a T is called
an isomorphism from V onto W .

Remark 2.41. Being isomorphic is an equivalence relation on the set of
vector spaces (over a given field).

Theorem 2.42. Let V,W be finite dimensional vector spaces (over the same
field). Then V is isomorphic to W if and only if dimV = dimW .

Proof. We have already seen ⇒. So it remains to prove ⇐. Let β =
{v1, . . . , vn} and γ = {w1, . . . , wn}. Saw earlier that T (vj) = wj for all
j defines a linear transformation V → W . It is onto because Range(T ) =
span{T (v1), . . . , T (vn)} = span{w1, . . . , wn} = W . It is one-to-one because
of the dimension formula.

Corollary 2.43. Let V be a vector space over F . Then V is isomorphic to
Fn if and only dimV = n.

3 Elementary Matrix Operations and Systems of
Linear Equations

3.1 Elementary matrix operations and elementary matrices

Definition 3.1. Let A be an m × n matrix. An elementary row operation
is any one of the following.

i. interchanging any two rows of A

ii. multiplying any row of A with a non-zero scalar

iii. adding any scalar multiple of a row of A to another row.

Definition 3.2. An n×n elementary matrix E is obtained by performing an
elementary operation on In. We say E is of type 1,2, or 3 if the elementary
operation was of that type according to Definition 3.1.
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Theorem 3.3. Let A ∈ Matm×n. Let B be obtained from A by an ele-
mentary row operation corresponding to the elementary matrix E (of size
m×m). Then

B = EA.

Proof. Direct verification in the three cases.

Theorem 3.4. Elementary matrices are invertible. The inverse of an ele-
mentary matrix is an elementary matrix of the same type.

Proof. Explicit checking.

3.2 The rank of a matrix and matrix inverses

Definition 3.5. Let A ∈Matm×n(F ). We define the rank of A, denoted by
rankA, to be the rank of the linear transformation LA : Fn → Fm given by
A.

Theorem 3.6. Let A ∈ Matm×n(F ). If P ∈ Matm×m(F ) and Q ∈
Matn×n(F ) are invertible, then

i. rank(AQ) = rank(A)

ii. rank(PA) = rank(A)

iii. rank(PAQ) = rank(A)

Proof.

range(LAQ) = range(LA ◦ LQ) = (LA ◦ LQ)(Fn) = LA(Fn)

where the last equality holds because LQ is onto (it is actually an isomor-
phism). Thus,

range(LAQ) = range(LA).

In particular, the ranks agree.

The two remaining statements are left as exercises.

Corollary 3.7. Elementary row operations do not change the rank of a
matrix.
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Theorem 3.8. The rank of any matrix A equals the maximum number of
linearly independent columns, i.e., the dimension of the subspace generated
by the columns.

Proof. Let β be the standard ordered basis for Fn. Then

range(LA) = span(LA(β)) = span{LA(e1), . . . , LA(en)}.

Note that LA(ei) simply is the i-th column of A.

The following sums up the discussion of Theorem 3.6, Corollary 1 and
Corollary 2 in the textbook.

By elementary row and column operations, any m × n matrix can be
transformed to an m× n matrix of the form

D =

(
Ir 0
0 0

)
,

where Ir is the identity matrix of size r × r. More precisely, there exist
elementary matrices E1, . . . , Ep and G1, . . . , Gq such that

D = Ep . . . E1AG1 . . . Gq.

Then
rankA = rankD = rankDt = rankAt,

where the last inequality is due to Dt = Gtq . . . G
t
1AE

t
1 . . . E

t
p and the fact

that the transpose of an elementary matrix is an elementary matrix.

We have just proven that

rankA = rankAt.

Definition 3.9. Let the row rank of a matrix denote the maximum number
of linearly independent rows.

Since the row rank of a matrix is clearly equal to the rank of its transpose,
we have proven that the row rank and the rank of any matrix agree.

Quiz 6:

33



(10 points) Find a 3× 3 matrix E such that

E

1 2 3
3 2 1
1 0 0

 =

2 4 6
1 0 0
4 4 4

 .

Explain the steps you took to find E.

Solution:

The matrix on the right hand side is obtained from the matrix on the left-
hand side by successively performing the following row operations:

i. Interchange the second and third row.

ii. Add the first row to the third

iii. Multiply the first row by 2.

The corresponding elementary matrices are

i. E1 =

1 0 0
0 0 1
0 1 0



ii. E2 =

1 0 0
0 1 0
1 0 1



iii. E3 =

2 0 0
0 1 0
0 0 1


Then

E = E3E2E1 =

2 0 0
0 0 1
1 1 0

 .

We continue with the discussion of the rank of a matrix. What we have
discussed yields the following corollary.

Corollary 3.10. The rank of a matrix A can be found by reducing A to
echelon form via row operations and counting the number of non-zero rows.
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Here is an example. To find the rank of A =
0 2 4 2 2
4 4 4 8 0
8 2 0 10 2
6 3 2 9 1

 ,

we simply reduce it, via elementary row operations to echelon form:
1 1 1 2 0
0 1 2 1 1
4 1 0 5 1
6 3 2 9 1

 ,


1 1 1 2 0
0 1 2 1 1
0 −3 −4 −3 1
0 −3 −4 −3 1

 ,


1 1 1 2 0
0 1 2 1 1
0 0 2 0 4
0 0 0 0 0

 .

The number of non-zero rows is 3, which means that the rank of A is 3.

Finally, a remark on the method of computing the inverse of a matrix.

Let A be an n× n invertible matrix. If we reduce A by elementary row
operations to the identity, then we are effectively executing the following
multiplication of A with elementary matrices:

Ep . . . E1A = In.

Observe that obviously Ep . . . E1 = A−1. Writing triviallyA−1 = Ep . . . E1 =
Ep . . . E1In, we conclude that the inverse of A can be obtained by applying
the same sequence of elementary row operations to the identity. This method
is commonly taught in an introductory course to Linear Algebra, but we now
have a very nice justification for it.

3.3 Systems of linear equations – theoretical aspects

A general system of m linear equations in n variables is

a11x1 + . . .+ a1nxn = b1, . . . , am1x1 + . . .+ amnxn = bm.
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This can be rewritten as

a11 . . . a1n
...

...
...

am1 . . . amn


x1

...
xn

 =

 b1
...
bm


or

Ax = b.

Definition 3.11. A solution of the above system is s = (s1, . . . , sn) ∈ Fn
such that As = b. The system is called consistent if there exists a solution.
The system is called homogeneous if and only if b = ~0.

Theorem 3.12. The set of solutions of Ax = ~0 is the null space of LA.

Proof. Clear!

Corollary 3.13. If m < n, the system Ax = ~0 has a non-zero solution.

Proof. The dimension formula yields

nullity(LA) = n− rank(LA) ≥ n−m > 0.

Theorem 3.14. Let K be the set of solutions of Ax = b and KH be the set
of solutions of Ax = 0. Then for any s with As = b,

K = {s}+KH = {s+ k : k ∈ KH}.

Proof. “⊇”. Let t ∈ KH . Then

A(s+ t) = As+At = As+~0 = As = b.

“⊆”. Let t ∈ K. Let w = t− s. Then

Aw = A(t− s) = At−As = b− b = 0.

Thus, w ∈ KH and t = s+ w ∈ {s}+KH .
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Example 3.15. Let us consider the single inhomogeneous equation in three
variables x1 − 2x2 + x3 = 4. An obvious solution is s = (4, 0, 0). Moreover,
the solution set of the homogeneous equation x1 − 2x2 + x3 = 0 is

KH = {(2x2 − x3, x2, x3) : x2, x3 ∈ R},

which can be rewritten as

{x2(2, 1, 0) + x3(−1, 0, 1) : x2, x3 ∈ R}.

Theorem 3.14 now says that

K = {(4, 0, 0) + x2(2, 1, 0) + x3(−1, 0, 1) : x2, x3 ∈ R}

(which we could have found directly, of course).

Theorem 3.16. Let Ax = b be a system of n equations in n variables. Then
A is invertible if and only if the system has exactly one solution.

Proof. ⇒. Let us multiply the equation from the left with A−1. Then it
becomes

A−1Ax = x = A−1b.

Thus, x = A−1b is the unique solution.

⇐. We saw: K = {s}+KH , where S is a solution. Since the solution is
unique, we can infer KH = {~0}. Thus, the null space of LA is {~0}, and A is
invertible.

Example 3.17. Let

A =

(
0 −1
2 4

)
.

Then

A

(
x1

x2

)
=

(
2
2

)
is equivalent to(

x1

x2

)
= A−1

(
2
2

)
=

(
2 1

2
−1 0

)(
2
2

)
=

(
5
−2

)
.
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Theorem 3.18. The system Ax = b is consistent if and only if rankA =
rank(A|b), where (A|b) is the augmented matrixa11 . . . a1n b1

...
...

...
...

am1 . . . amn bm

 .

Proof. The system is consistent if and only if b ∈ R(LA), which means
b ∈ span{LA(e1), . . . , LA(en)}. This in turn is equivalent to

span{LA(e1), . . . , LA(en)} = span{LA(e1), . . . , LA(en), b},

which is equivalent to rankA = rank(A|b).

Example 3.19. Let’s consider the system x1 + 2x2 = 1, 2x1 + 4x2 = 0. It
is not consistent because

rank

(
1 2
2 4

)
= 1,

but

rank

(
1 2 1
2 4 0

)
= 2.

4 Determinants

4.1 Determinants of 2× 2 matrices

Definition 4.1. Let A =

(
a b
c d

)
be a 2×2 matrix over some field F . Then

we define the determinant of A (also detA or |A|) to be the scalar ad− bc.

Example 4.2. det

(
5 0
1 2

)
= 5 ·2−1 ·0 = 10, det

(
1 2
2 4

)
= 1 ·4−2 ·2 = 0.

The following is an important observation:

det

((
5 0
1 2

)
+

(
1 2
3 4

))
= det

(
6 2
4 6

)
= 36− 8 = 28.
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On the other hand,

det

(
5 0
1 2

)
+ det

(
1 2
3 4

)
= 10− 2 = 8.

The above clearly shows that the determinant is not linear, which we state
as the following remark.

Remark 4.3. det : Mn×n(F )→ F is not a linear functional.

Instead, the right kind of linearity is the following.

Theorem 4.4. det : Mn×n(F ) → F is a linear function of each row when
the other row is held fixed, i.e., for the first row, we have

det

(
a11 + b11 a12 + b12

a21 a22

)
= det

(
a11 a12

a21 a22

)
+ det

(
b11 b12

a21 a22

)
and

det

(
ca11 ca12

a21 a22

)
.

The statements for the second row are analogous.

Proof. Expand all expressions according to the definition and compare both
sides of the equations.

Theorem 4.5. Let A ∈M2×2(F ). Then

detA 6= 0⇔ A is invertible.

Proof. “⇒” Since detA 6= 0, the matrix B = 1
detA

(
a22 −a12

−a21 a11

)
is well-

defined. Since AB = I2 = BA by explicit computations, it is clear that A is
invertible and its inverse is B.

“⇐” Since A is invertible, its rank is two. Thus, at least one of a11, a21

must be not equal to zero. Without loss of generality, let’s assume it is a11.
If we perform on A the elementary row operation of adding −a21a11

times the
first row to the second, we obtain the matrix(

a11 a12

0 a22 − a12a21
a11

)
.
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We know that elementary row operations do not change the rank, so this
matrix still has rank two, which implies

a22 −
a12a21

a11
6= 0.

Multiplying this relation by a11 yields

detA = a11a22 − a12a21 6= 0.

4.2 Determinants of order n

We now define the determinant of a matrix A ∈Mn×n for n ≥ 3.

Remark 4.6. In class and in these notes so far, our convention was to refer
to the entries of matrices with lower case letters, e.g., as aij . The textbook
however uses upper case letters, e.g., Aij . We follow the convention of the
textbook in this section to make going back and forth between these notes
and the textbook easier. Be sure not to confuse Aij with Ãij as defined
below.

Definition 4.7. Let A ∈ Mn×n. For fixed i, j ∈ {1, . . . , n} denote by Ãij
the (n−1)×(n−1) matrix obtained by deleting the i-th row and j-th column
of A.

Example 4.8. Let

A =

 2 1 0
1 3 π√
2 1 −1

 .

Then

Ã11 =

(
3 π
1 −1

)
, Ã12 =

(
1 π√
2 −1

)
, Ã32 =

(
2 0
1 π

)
.

Definition 4.9. Let A ∈Mn×n. If n = 1, then let detA = A11.

If n ≥ 2, define detA recursively as

detA =

n∑
j=1

(−1)1+jA1j det(Ã1j).
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Definition 4.10. The determinant det Ãij is called the (i, j)-minor. The
scalar cij = (−1)i+j det(Ãij) is called the (i, j)-cofactor.

With the above definitions the definition of the determinant can be re-
stated as

detA =

n∑
j=1

c1jA1j .

For obvious reasons, this is also referred to as the cofactor expansion of the
determinant along the first row. Here are some examples:

Let A =

(
a b
c d

)
. Then detA = (−1)2a det(d) + (−1)3bdet(c) = ad− bc,

as defined in the previous subsection.

Let A =

 1 3 −3
−3 −5 2
−4 4 −6

 . Then detA =

(−1)2·1·det

(
−5 2
4 −6

)
+(−1)3·3·det

(
−3 2
−4 −6

)
+(−1)4·(−3)·det

(
−3 −5
−4 4

)
= 40.

Let A =

 0 1 3
−2 −3 −5
4 −4 4

 . Then detA =

0 + (−1)3 · 1 · det

(
−2 −5
4 4

)
+ (−1)4 · 3 · det

(
−2 −3
4 −4

)
= 48.

Let A =


2 0 0 1
0 1 3 −3
−2 −3 −5 2
4 −4 4 −6

 . Then detA =

(−1)2 · 2 · det

 1 3 −3
−3 −5 2
−4 4 −6

+ (−1)5 · 1 · det

 0 1 3
−2 −3 −5
4 −4 4

 = 32.

Theorem 4.11. The determinant of an n×n matrix is a linear function of
each row when the remaining rows are held fixed.
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Proof. Write the matrix in question as

A =


a11 . . . a1n
...

...
...

ar1 + kbr1 . . . arn + kbrn
...

...
...

an1 . . . ann

 .

Also, let

B =


a11 . . . a1n
...

...
...

ar1 . . . arn
...

...
...

an1 . . . ann


and

C =


a11 . . . a1n
...

...
...

br1 . . . brn
...

...
...

an1 . . . ann

 .

The theorem is immediate from the definition of the determinant if the row
in question is the first row, i.e., r = 1. So we may assume that the row in
question is not the first row, i.e., r ≥ 2. By induction, we know that

det Ã1j = det B̃1j + k det C̃1j ,

because Ã1j , B̃1j , C̃1j are matrices of size (n−1)×(n−1) and have the exact
form necessary to apply the theorem. Thus,

detA =
n∑
j=1

(−1)1+jA1j det(Ã1j) =
n∑
j=1

(−1)1+jA1j(det(B̃1j) + k det(C̃1j)).

Since clearly
A1j = B1j = C1j ,

the above equals

n∑
j=1

(−1)1+jB1j det(B̃1j) +

n∑
j=1

(−1)1+jC1jk det(C̃1j) = detB + k detC.
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Corollary 4.12. If A has a row of zeroes, then its determinant is zero.

Proof. Let it be the r-th row of A which is zero. Let B be a matrix which
agrees with A outside of the r-th row. Then by the preceding theorem,

detB = detB + detA.

Thus, detA = 0.

Next, we establish that it is not necessary to use the first row for the
expansion to compute the determinant: any row will work.

Theorem 4.13. The determinant of a square matrix A ∈ Matn×n can be
found by cofactor expansion along any row, i.e., for all i = 1, . . . , n,

detA =
n∑
j=1

(−1)i+jAij det(Ãij).

Proof. The case i = 1 is the definition, so we may assume i ≥ 2. By linearity
with respect to the i-th row, we obtain

detA = ai1 det


a11 . . . a1n
...

...
...

1 0 0
...

...
...

an1 . . . ann

+ . . .+ ain det


a11 . . . a1n
...

...
...

0 0 1
...

...
...

an1 . . . ann

 .

The next step in the proof uses the Lemma on pages 213-214 in the textbook.
We do not give its proof here, because a detailed rigorous proof (filling the
entire page 214) is given in the textbook. In essence, the lemma says that
the above is equal to

ai1(−1)i+1 det Ãi1 + . . .+ a1n(−1)i+n det Ãin,

which is what we intended to prove.

Quiz 7:

1. (5 points) For an unknown real parameter t, let

A =

1 t t2

t 1 t
t2 t 1

 .
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Compute detA. For which values of t is detA = 0?

2. (5 points) Let B ∈ Matn×n(R). What is the condition for det(B) =
det(−B)? Justify your answer carefully. Hint: Be sure to consider all possi-
ble cases.
Solution:

1. An expansion along the first row yields

detA = 1 ·
(

1 t
t 1

)
− t
(
t t
t2 1

)
+ t2

(
t 1
t2 t

)
= . . . = (1− t2)2.

Thus, detA = 0 if and only if t = ±1.

2. The key observation here is that det(cA) = cn detA by an n-fold ap-
plication of the linearity property of determinants with respect to rows of
matrices. Therefore, det(−B) = (−1)n detB and the problem asks when
this is equal to detB. In case detB = 0, the equality always holds, i.e.,
there is no condition on n. If detB 6= 0, then equality holds if and only if n
is even.

Corollary 4.14. If A ∈Matn×n has two identical rows, then detA = 0.

Proof. We proceed by induction. Let n = 2. Then clearly

detA = det

(
a b
a b

)
= 0.

In the case of general n ≥ 3, let the two identical rows be rows r and s. Let
i 6= r, i 6= s. Then we compute detA by an expansion along the i-th row:

detA =
n∑
j=1

(−1)i+jAij det(Ãij).

However, the matrices Ãij also have two identical rows (since we are deleting
a third row), so by induction their determinants are 0. Thus, detA is also
zero.

Next, we investigate the influence of elementary row operations on the
determinant.

Theorem 4.15. Let A ∈Matn×n. If B is obtained from A by interchanging
two rows, then detB = −detA.
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Proof. Write

A =



a1
...
ar
...
as
...
an


, B =



a1
...
as
...
ar
...
an


,

with the ai representing rows. Next, observe that

0 = det



a1
...

ar + as
...

ar + as
...
an


= det



a1
...
ar
...

ar + as
...
an


+ det



a1
...
as
...

ar + as
...
an


due to Corollary 4.14 and linearity. We can expand this further to

det



a1
...
ar
...
ar
...
an


+ det



a1
...
ar
...
as
...
an


+ det



a1
...
as
...
ar
...
an


+ det



a1
...
as
...
as
...
an


.

Due to Corollary 4.14, the two outer determinants are zero, which proves
our claim.

Theorem 4.16. Let A ∈ Matn×n and let B be obtained from A by adding
a multiple of one row to another row of A. Then detB = detA.
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Proof.

detB = det



a1
...
ar
...

kar + as
...
an


= k det



a1
...
ar
...
ar
...
an


+ det



a1
...
ar
...
as
...
an


.

Due to Corollary 4.14, the determinant of the matrix with the two identical
rows is zero, which proves our claim.

Corollary 4.17. Let A ∈Matn×n. If A has rank less than n then detA = 0.

Proof. We have seen that performing an elementary row operation on a
matrix may change the value of its determinant. However, it will not change
whether the determinant is zero or not. Now, if we transform A into echelon
form, the fact that A has rank less than n means that the echelon form will
contain a row of zeroes. Thus, the determinant of the matrix in echelon form
is equal to zero due to Corollary 4.12. This means that the determinant of
A was zero to begin with.

Quiz 8:

1. (5 points) Over the real numbers, find the value of k that satisfies the
following equation:

det

 2a1 2a2 2a3

3b1 + 5c1 3b2 + 5c2 3b3 + 5c3

4c1 4c2 4c3

 = k det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

Justify your answer carefully.

2. (5 points) Compute

det


3 3 2 1
1 2 0 1
1 −1 1 1
0 2 −2 2

 .

You MUST use the method of row reductions.
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Solution:

1.

det

 2a1 2a2 2a3

3b1 + 5c1 3b2 + 5c2 3b3 + 5c3

4c1 4c2 4c3

 = det

2a1 2a2 2a3

3b1 3b2 3b3
4c1 4c2 4c3


because adding −5

4 times the third row to the second one does not change
the determinant. Moreover,

det

2a1 2a2 2a3

3b1 3b2 3b3
4c1 4c2 4c3

 = 2 · 3 · 4 · det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

Thus, k = 24.

2. We use elementary row operations to reduce the matrix to upper tri-
angular form. In each step, note the effect on the factor in front of the
determinant. At the end, we use that the determinant of a triangular ma-
trix is simply the product of the diagonal entries.

det


3 3 2 1
1 2 0 1
1 −1 1 1
0 2 −2 2



=− det


1 2 0 1
3 3 2 1
1 −1 1 1
0 2 −2 2



=− det


1 2 0 1
0 −3 2 −2
0 −3 1 0
0 2 −2 2



=2 det


1 2 0 1
0 1 −1 1
0 −3 1 0
0 −3 2 −2



=2 det


1 2 0 1
0 1 −1 1
0 0 −2 3
0 0 −1 1
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=− 2 det


1 2 0 1
0 1 −1 1
0 0 −1 1
0 0 −2 3



=− 2 det


1 2 0 1
0 1 −1 1
0 0 −1 1
0 0 0 1


=(−2)(−1) = 2.

4.3 Properties of determinants

It is clear from our previous discussion that

det(elementary matrix which interchanges two rows) = −1,

det(elementary matrix which adds a multiple of one row to another) = 1,

det(elementary matrix which multiplies a given row by k) = k.

While we saw earlier that matrix addition is not compatible with taking the
determinant, we now show that matrix multiplication is.

Theorem 4.18. Let A,B ∈Matn×n. Then

det(AB) = detA · detB.

Proof. We saw earlier that det(EC) = det(E) det(C) for any C ∈ Matn×n
when E is an elementary matrix. We may assume that rankA = rankB = n,
because otherwise both sides are clearly equal to zero. As we did earlier, we
write A as a product of elementary matrices A = E1 . . . Ep. Now

det(AB) = det(E1 . . . EpB)

= det(E1) det(E2 . . . EpB)

= det(E1) . . . det(Ep) det(B)

= det(E1) . . . det(Ep−1Ep) det(B)

= det(E1 . . . Ep) det(B)

= detA · detB
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Corollary 4.19. Let A ∈ Matn×n. Then A is invertible if and only if
detA 6= 0. Moreover, if detA 6= 0, then detA−1 = 1

detA .

Proof. We already gave an argument for “⇐” in the previous section. We
now prove “⇒”, for which we just observe that

1 = det In = det(AA−1) = detA · detA−1,

which implies that detA cannot be zero. Moreover, detA−1 = 1
detA is also

clear now.

Theorem 4.20. Let A ∈Matn×n. Then detA = detAT .

Proof.

det(AT ) = det((E1 . . . Ep)
T )

= det(ETp . . . E
T
1 )

= det(ETp ) . . . det(ET1 )

= det(ET1 ) . . . det(ETp )

= det(E1) . . . det(Ep)

= det(E1 . . . Ep)

= det(A).

Note that the fourth equal sign is simply due to the commutativity of the re-
als. The equality detETi = detEi is obvious for all three types of elementary
matrices.

Theorem 4.21 (Cramer’s Rule). Let A ∈Matn×n be an invertible matrix.
Let x = (x1, . . . , xn) be the unique solution of Ax = b. Let Mk be obtained
from A by replacing the k-th column of A by b. Then

xk =
detMk

detA
.

Proof. Let Xk be obtained from In by replacing the k-th column by the
vector x. The expansion of Xk along the k-th row shows that detXk = xk.
Moreover, it is straightforward to check that

A ·Xk = Mk.
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Thus,
detMk = det(A ·Xk) = detA · detXk = (detA) · xk,

which yields

xk =
detMk

detA
.

5 Diagonalization

5.1 Eigenvalues and eigenvectors

Motivation: Let T : V → V be a linear transformation. It may happen that
a certain nonzero vector v gets mapped to a scalar multiple of itself, i.e.,
T (v) = λv for some λ ∈ F . Such vectors are clearly special, and we now
study these types of pairs of scalars and vectors (v, λ) and related questions.

Definition 5.1. A linear operator T on a finite dimensional vector space V
is called diagonalizable if there is an ordered basis β for V such that [T ]β
is a diagonal matrix. Moreover, we call a square matrix diagonalizable if
LA : Fn → Fn, v 7→ Av is diagonalizable.

Definition 5.2. Let T be a linear operator on the vector space V . A non-
zero v ∈ V is called eigenvector of T if

T (v) = λv

for some scalar λ in F . The scalar λ is called the corresponding eigenvalue.
Moreover, for A ∈Matn×n(F ), the nonzero vector v ∈ Fn is an eigenvector
of A if and only if LA(v) = λv, i.e., Av = λv, for some scalar λ ∈ F , which
we again call the corresponding eigenvalue.

Theorem 5.3. Let T be a linear operator on V . Then T is diagonalizable
if and only if there exists an orered basis β = {v1, . . . , vn} of eigenvectors.

Proof. “⇒” It is clear that

[T ]β =


λ1 0 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 . . . 0 λn

 ,
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which is a diagonal matrix, so T is diagonalizable.

“⇐” Let β = {v1, . . . , vn} be the ordered basis for which [T ]β is diagonal.
Then

[T ]β[vi]β = λiei = λi[vi]β.

Thus, T (vi) = λivi, which implies that vi is an eigenvector.

Example 5.4. Let

A =

(
1 3
4 2

)
, v1 =

(
1
−1

)
, v2 =

(
3
4

)
.

Then Av1 = (−2, 2) = (−2)(1,−1) and Av2 = (15, 20) = 5(3, 4). Thus,
β = {(1,−1), (3, 4)} and

[LA]β =

(
−2 0
0 5

)
.

Remark 5.5. Linear operators and matrices do not necessarily have eigen-
vectors. For example, the rotation by 90 degrees in the plane clearly has
none.

Example 5.6. Let T : C∞(R,R) → C∞(R,R) be given by f 7→ df
dx . Then

T (f) = λf is equivalent to df
dx = λf , which is solved by f(x) = ceλx.

Theorem 5.7. Let A ∈ Matn×n(F ). Then λ ∈ F is an eigenvalue of A if
and only if det(A− λIn) = 0.

Proof. For a nonzero vector v ∈ V , the following are equivalent:

Av = λv

⇔ Av − λv = ~0

⇔ Av − λInv = ~0

⇔ (A− λIn)v = ~0

⇔ ~0 6= v ∈ ker(A− λIn)

Thus, det(A − λIn) = 0, and conversely, det(A − λIn) = 0 implies the
existence of a vector v with Av = λv.

Definition 5.8. Let A ∈Matn×n(F ). The polynomial f(t) = det(A− tIn)
is called the characteristic polynomial of A.
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Remark 5.9. Theorem 5.7 says that the set of eigenvalues of A equals the
set of roots of the characteristic polynomial.

Let us find the eigenvalues of A =

(
1 1
4 1

)
.

det(A− tI2) = det

(
1− t 1

4 1− t

)
= (1− t)2 − 4 = t2 − 2t− 3.

The roots of this polynomial are λ = 3 or λ = −1.

Let us find the eigenvalues of A =

 5 8 16
4 1 8
−4 −4 −11

.

det(A−tI3) = det

5− t 8 16
4 1− t 8
−4 −4 −11− t

 = det

5− t 8 16
4 1− t 8
0 −3− t −3− t

 .

Extracting the common factor from the third row and then doing an expan-
sion along the same row yields:

(−3− t)
(
−det

(
5− t 16

4 8

)
+ det

(
5− t 8

4 1− t

))
= −(t+ 3)(t2 + 2t− 3).

This is a third degree polynomial which can be factored into −(t+3)2(t−1),
which means that the eigenvalues of the matrix A are λ = 1 and λ = −3,
the latter with multiplicity two.

Quiz 8:

1. (5 points) Find the eigenvalues of A =

 0 −2 −3
−1 1 −1
2 2 5

.

2. (5 points) Let V be a vector space and T : V → V a linear transformation
with pairwise distinct eigenvalues λ1, λ2, λ3. Let v1 be an eigenvector for λ1,
v2 an eigenvector for λ2 and v3 an eigenvector for λ3. Prove that v1, v2, v3

are linearly independent.
Hint: Make the Ansatz a1v1 + a2v2 + a3v3 = 0 and apply the linear trans-
formations T − λ1 · Id, T − λ2 · Id, T − λ3 · Id.

Solution:
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1. Let us find the eigenvalues of A =

 0 −2 −3
−1 1 −1
2 2 5

 as the roots of the

characteristic polynomial:

det(A− tI3) = det

−t −2 −3
−1 1− t −1
2 2 5− t

 = −det

−1 1− t −1
−t −2 −3
2 2 5− t

 .

In the above, as a first step, we have moved −t out of the top left hand
corner by interchanging rows 1 and 2. Under obvious row operations, this
becomes

det

1 t− 1 1
0 t2 − t− 2 t− 3
0 −2t+ 4 3− t

 .

This determinant can be expanded along the first row to obtain

(t− 3) det

(
t2 − t− 2 1
−2t+ 4 −1

)
= −(t− 3)(t2 − t+ 2) = −(t− 3)(t− 1)(t− 2).

Thus, the eigenvalues of A are 1, 2, 3.

2. Start with the Ansatz a1v1 + a2v2 + a3v3 = ~0. Apply the linear transfor-
mations T − λ1 · Id to get

a1(λ1−λ1)v1+a2(λ2−λ1)v2+a3(λ3−λ1)v3 = a2(λ2−λ1)v2+a3(λ3−λ1)v3 = ~0.

Note that λ2 − λ1 6= 0 6= λ3 − λ1, as λ1, λ2, λ3 are pairwise distinct. Now,
apply T − λ2 · Id to get

a2(λ2−λ1)(λ2−λ2)v2 +a3(λ3−λ1)(λ3−λ2)v3 = a3(λ3−λ1)(λ3−λ2)v3 = ~0.

Since λ3 − λ1 6= 0 6= λ3 − λ2, we must have a3 = 0. By symmetry, we also
get a1 = a2 = 0, q.e.d.

5.2 Diagonalizability

A slight generalization of Quiz 9, Problem 2 is the following:
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Theorem 5.10. Let T : V → V linear operator, let λ1, . . . , λk be distinct
eigenvalues of T . If v1, . . . , vk are eigenvectors corresponding to λ1, . . . , λk
respectively, then v1, . . . , vk are linearly independent.

Proof. We proceed by induction on k. The case k = 1 is trivial. Now, we
assume that the statement is true for k − 1 and show that it also holds for
k. To this end, we write

a1v1 + . . .+ akvk = ~0

and have to conclude that a1 = . . . = ak = 0. We apply the linear operator
T − λk id to this equation, which yields

a1(λ1 − λk)v1 + . . .+ ak−1(λk−1 − λk)vk−1 + ak(0)vk = ~0,

i.e.,
a1(λ1 − λk)v1 + . . .+ ak−1(λk−1 − λk)vk−1 = ~0.

Due to the induction assumption, v1, . . . , vk−1 are linearly independent, so

ai(λi − λk) = 0

for i = 1, . . . , k − 1. Since all eigenvalues are distinct, λi − λk 6= 0 when
i 6= k. Thus, ai = 0 for i = 1, . . . , k − 1. Going back to the first displayed
equation in this proof, we finally obtain ak = 0.

Corollary 5.11. Let T : V → V linear. If T has n = dimV distinct
eigenvalues, then T is diagonalizable.

Proof. Let v1, . . . , vn be eigenvectors corresponding to the distinct eigen-
values, respectively. The previous theorem says that v1, . . . , vn are linearly
independent. Since n = dimV , this is actually a basis for V . Thus, we have
found a basis of eigenvectors of T for V , which means T is diagonalizable.

Good luck for the Final Exam!

THE END
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