UH - Math 4377/6308 - Dr. Heier - Fall 2017
 HW 1

Revised due date: 09/07, at the beginning of class.

Use regular sheets of paper, stapled together.
 Don't forget to write your name on page 1.

1. (1 point) Let $A=\{1,2,5\}, B=\{4,5\}, C=\{4,6\}$. Explicitly write down the sets

$$
A \cup B, A \cap B, A \cap(B \cup C), A \cap B \cap C, A \times C
$$

2. Let $x, y \in \mathbb{Z}$. Prove or disprove that the following relations are equivalence relations.
(a) (0.5 points) $x \sim y$ if and only if $x-y$ is less than 10 .
(b) (0.5 points) $x \sim y$ if and only if $x \cdot y \geq 0$.
(c) (0.5 points) $x \sim y$ if and only if $x-y$ is even.
3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) (1 point) Assume that $g \circ f$ is injective. Does this imply that both f and g are injective? Prove your answer.
(b) (1 point) Assume that $g \circ f$ is surjective. Does this imply that both f and g are surjective? Prove your answer.
4. Let $f:\{0,1,2,3,4\} \rightarrow \mathbb{N}, n \mapsto n^{3}+n$.
(a) (0.5 points) Find the domain, codomain and range of f.
(b) (0.5 points) Is f one-to-one? Prove your answer.
(c) (0.5 points) Is f onto? Prove your answer.
5. (1 point) Prove carefully that in any field F, all $a, b \in F$ satisfy $a \cdot(-b)=-(a \cdot b)$. Here, for any $x \in F,-x$ denotes the unique additive inverse of x.
6. (1 point) Prove that the set of numbers $\{x+y \sqrt{3} \mid x, y \in \mathbb{Q}\}$ is a field with the usual addition and multiplication of reals.
7. (1 point) Let $z=1+3 i, w=1-2 i$. Write $\bar{z}, z+w, z w,|z|, \frac{1}{z}$ in the form $a+b i$.
8. (1 point) Find all solutions of the equation $z^{2}-2 z+5=0$ in \mathbb{C}.
9. (1 extra credit point) Let $x, y \in \mathbb{Z}$. Let $x \sim y$ if and only if $y+4 x$ is an integer multiple of 5 . Prove that \sim is an equivalence relation.
