§1.6 #14: Find bases for the following subspaces of F^5

$W_1 = \{ (a_1,a_2,a_3,a_4,a_5) \in F^5 : a_1 - a_3 - a_4 = 0 \}$

First, recognize which values are free to take any number in F without affecting $a_1 - a_3 - a_4 = 0$. We see that a_2 and a_5 are not present, so

$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ are vectors in the basis for F^5.

For the remaining vectors we must construct the basis vector in a way that satisfies the given equation.

- allowing a_3 to be zero \Rightarrow $a_1 = a_4 = 7 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ is a basis vector.
- allowing a_1 to be zero \Rightarrow $a_3 = -a_4 = 7 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$ is a basis vector.

We stop here b/c if we carry this scheme forward and allow $a_4 = 0$ then a basis vector could be $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ but this is a linear combination of $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$, so it must be scrapped. $\therefore \text{Basis}(W_1) = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \}$

and $\dim(W_1) = 4$.
Using the same thought process as before, we have that a basis for \(W_2 \) is \(
\begin{pmatrix}
10
00
00

11
10
10

1
1

-1
0
0
\end{pmatrix}
\) with \(\dim W_2 = 2 \)

\#5: Let \(G = \{(1, -1, 0, 1), (1, 0, 1, 0), (1, 2, 2, 0), (1, 2, 2, 0)\} \)

Let \(L = \{(-1, 4, 2, 0)\} \)

(a) Show that \(G \) spans \(\mathbb{F}^4 \). Want to show \(\begin{pmatrix}
1 & 1 & 0 & \alpha_1
0 & 1 & 2 & 0
0 & 1 & 2 & 0
0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha_1
\alpha_2
\alpha_3
\alpha_4
\end{pmatrix}
= \begin{pmatrix}
\alpha_1
\alpha_2
\alpha_3
\alpha_4
\end{pmatrix}
\)

reduces to a matrix with full rank.

We observe that this matrix is full rank \(\iff \) each column has a pivot.
The right hand side are numbers in the underlying field undergoing operations that put them back into the field (addition and scalar multiplication).

(b) Choose \(H = \{(1, -1, 0, 1), (1, 0, 1, 0), (1, 2, 2, 0)\} \); \(L = \{(-1, 4, 2, 0)\} \).

reduce HUL to see if all vectors are linearly independent.

\(\begin{pmatrix}
1 & 1 & -1 & \alpha_1
0 & 1 & 2 & 0
0 & 1 & 2 & 0
0 & 0 & 1 & 0
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0
0 & 1 & 2 & 0
0 & 0 & 1 & 0
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha_1
\alpha_2
\alpha_3
\alpha_4
\end{pmatrix}
\)

By the Replacement Theorem

\(\text{HUL generates } V \)

\(\text{Span } G = \text{Span } (\text{HUL}) \)

Again, we're reduced to a full rank matrix, \(\therefore \) independence of vectors.
1.6 # 29 Proof: If W_1 and W_2 are finite dimensional subspaces of V, where V is a vector space, then $W_1 + W_2$ is finite dimensional and that $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

(a) Let $\text{Basis}_3(W_1 \cap W_2) = \{u_1, u_2, \ldots, u_k\}$ then $\dim(W_1 \cap W_2) = k$.

(b) Let $\text{Basis}_3(W_1) = \{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m\}$ then $\dim(W_1) = k + m$.

(c) Let $\text{Basis}_3(W_2) = \{u_1, u_2, \ldots, u_k, w_1, w_2, \ldots, w_p\}$ then $\dim(W_2) = k + p$.

Let $\text{Basis}_3(W_1 + W_2) = \{u_1, \ldots, u_k, v_1, \ldots, v_m, w_1, \ldots, w_p\}$ then $\dim(W_1 + W_2) = (k + m) + (k + p) - k = k + m + p$.

Note: $W_1 \subseteq W_1 \cap W_2$,

$W_2 \subseteq W_1 \cap W_2$.

$\{v_1, \ldots, v_m\} \subseteq W_1 \cap W_2$.

$\{w_1, \ldots, w_p\} \subseteq W_2 \cap W_1$.

(b) W_1 and W_2 finite dimensional subspaces and $V = W_1 + W_2$.

Prove $V = W_1 \oplus W_2$ iff $\dim(V) = \dim(W_1) + \dim(W_2)$.

(\Rightarrow) Assume $V = W_1 \oplus W_2$.

$W_1 \cap W_2 = \{\emptyset\}$ by assumption.

Since $V = W_1 + W_2$ is given and by above we have $\dim(V) = \dim(W_1) + \dim(W_2)$.

(\Leftarrow) Assume $\dim(V) = \dim(W_1) + \dim(W_2)$.

By above part (a), we have $\dim(W_1 \cap W_2) = \emptyset$ and $V = W_1 + W_2$ as given.

These together define the direct sum, so $V = W_1 \oplus W_2$.

\[\square \]