UH - Math 4377/6308 - Dr. Heier - Spring 2010 Sample Final Exam
 Time: 175 min

1. (a) (3 points) Let $z=a+i b$ be a complex number. Prove that $|z|^{2}=z \bar{z}$.
(b) (4 points) Solve the equation $z(1+i)=i$ for z.
(c) (3 points) Is the function $f:(1,4) \rightarrow(1,2), x \mapsto \sqrt{x}$ one-to-one? Onto?
2. (a) (5 points) Determine if the following subset of \mathbb{R}^{2} is a subspace. Justify your answer carefully:

$$
\left\{\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}: a_{1} \cdot a_{2}=0\right\}
$$

(b) (5 points) Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces. You may assume as true that the set of 2×2 matrices with real entries forms a vector space with the usual addition and scalar multiplication.
(a) $\left\{\left(\begin{array}{cc}a_{1} & a_{1}+a_{2} \\ a_{2} & 0\end{array}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$
(b) $\left\{\left(\begin{array}{cc}a_{1} & a_{1} \cdot a_{2} \\ a_{2} & a_{3}\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
3. (a) (5 points) Find bases for the kernel and range of

$$
T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4},\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mapsto\left(a_{1}+a_{4}+a_{5},-a_{1}+a_{2}+a_{4}, a_{5}-a_{4}, a_{1}+2 a_{5}\right) .
$$

(b) (5 points) Let $G=\{(1,-1,0,1),(1,0,1,0),(1,2,4,2),(0,2,2,2)\}$. Let $L=\{(2,-4,-3,0)\}$. Find a subset $H \subset G$ of cardinality 3 such that $H \cup L$ spans \mathbb{R}^{4}. Prove the spanning property with an explicit computation.
4. (a) (5 points) Find the rank of

$$
\left(\begin{array}{llll}
2 & 2 & 0 & 1 \\
3 & 1 & 3 & 3 \\
5 & 3 & 3 & 4 \\
7 & 5 & 3 & 5 \\
8 & 4 & 6 & 7
\end{array}\right)
$$

(b) (5 points) Give an example of $A, B \in M_{4 \times 4}(\mathbb{R})$ such that both A and B have rank 2, but their product $A B$ has rank 1 .
5. (10 points) Find the inverse of

$$
\left(\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right)
$$

6. (a) (5 points) Let

$$
A=\left(\begin{array}{ccc}
2 & 2 & 0 \\
3 & 1 & 3 \\
5 & 3 & -2
\end{array}\right)
$$

and let

$$
B=\left(\begin{array}{ccc}
1 & 1 & -1 \\
3 & 1 & 3 \\
4 & 2 & 1
\end{array}\right)
$$

Find $\operatorname{det}(A), \operatorname{det}(B)$ and $\operatorname{det}(A B)$.
(b) (5 points) Compute the determinant of

$$
\left(\begin{array}{cccc}
5 & -1 & 0 & 1 \\
4 & 0 & 1 & 0 \\
5 & 2 & 5 & 3 \\
4 & -4 & -3 & 0
\end{array}\right)
$$

7. (a) (5 points) Let $A, B \in M_{n \times n}(\mathbb{R})$ be such that $A B=-B A$. Prove that if n is odd, then at least one of the two matrices A, B is not invertible.
(b) (5 points) Let $A \in M_{n \times n}(\mathbb{R})$ have two distinct eigenvalues λ_{1}, λ_{2}. Give a necessary and sufficient criterion in terms of $\operatorname{dim} E_{\lambda_{1}}$ and $\operatorname{dim} E_{\lambda_{2}}$ for the diagonalizability of A.
8. (a) (5 points) Find the eigenvalues of

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

(b) (5 points) Find the eigenvectors of A.
(c) (5 points) Find a matrix Q such that $Q^{-1} A Q$ is diagonal.
9. (15 points) Is the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & -8 \\
-4 & 9 & -4 \\
-10 & 0 & -1
\end{array}\right)
$$

diagonalizable? If yes, give a basis of eigenvectors of A for \mathbb{R}^{3}.

