1. Let $A=\{1,2,3\}, B=\{3,4\}$. Write down all elements of the sets

$$
A \cup B, A \cap B, A \backslash B, A \times A, A \times B
$$

2. Let $x, y \in \mathbb{Z}$. Let $x \sim y$ if and only if $4 \mid y-x$. Prove that \sim is an equivalence relation.
3. Let $f:\{1,2,3,4\} \rightarrow \mathbb{N}, n \mapsto n^{2}$.
(a) Find the domain, codomain and range of f.
(b) Is f one-to-one?
(c) Is f onto?
4. Let a, b be arbitrary elements in a field. Prove that $(-a) \cdot b=-(a \cdot b)$. (Hint: You may use without proof the fact that the additive inverse is unique.)
5. Let $z=2+3 i, w=1-i$. Write $\bar{z}, z+w, z w,|z|, \frac{1}{z}$ in the form $a+b i$.
6. Solve $x^{2}-4 x+13=0$ in \mathbb{C}.
7. Describe the plane in \mathbb{R}^{3} through $(1,2,3),(2,0,1),(0,1,0)$.
8. (extra credit) Let $x, y \in \mathbb{Z}$. Let $x \sim y$ if and only if $5 \mid y+4 x$. Prove that \sim is an equivalence relation.
