UH - Math 4377 - Dr. Heier - Spring 2010 HW 2 - due 02/04 at the beginning of class

1. Does

$$
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right) \text { and } c\left(a_{1}, a_{2}\right)=\left(c a_{1}, a_{2}\right)
$$

define a vector space structure on the 2-tuples of real numbers? Justify your answer.
2. Prove that in a vector space V, the zero vector $\overrightarrow{0}$ is unique.
3. Determine if the following subsets of \mathbb{R}^{3} are subspaces.
(a) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}-3 a_{3}=0\right\}$
(b) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}-2 a_{2}+a_{3}=1\right\}$
(c) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}=a_{3}\right\}$
(d) $\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}=5 a_{3}\right.$ and $\left.4 a_{2}=a_{1}+a_{3}\right\}$
4. Determine if the following subsets of the vector space of 2×2 matrices with real entries are subspaces. You may assume as true that the set of 2×2 matrices with real entries forms a vector space with the usual addition and scalar multiplication.
(a) $\left\{\left(\begin{array}{cc}a_{1} & a_{2} \\ a_{3} & 0\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
(b) $\left\{\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{2} & a_{3}\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
5. A real-valued function f defined on the real line is called an even function if $f(t)=f(-t)$ for each real number t. Prove that the set of even functions is a subspace with the usual addition and scalar multiplication for functions. You may assume as true that the set of real-valued functions f defined on the real line is a vector space with the usual addition and scalar multiplication for functions.
6. Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the intersection $W_{1} \cap W_{2}$ is also a subspace of V.
7. (extra credit) Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the union $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{2} \subseteq W_{1}$ or $W_{1} \subseteq W_{2}$.

