UH - Math 4377 - Dr. Heier - Spring 2010
 HW 6 - due 03/04 at the beginning of class

1. Let $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T_{1}\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right)$. Let $\beta=\{(1,0),(0,1)\}$ and $\gamma=\{(1,2),(1,1)\}$. Compute $[T]_{\beta}^{\gamma}$.
2. Let $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T_{2}\left(a_{1}, a_{2}\right)=\left(2 a_{1}+4 a_{2},-a_{1}-a_{2}\right)$. Let $\beta=\{(1,2),(-1,1)\}$ and $\gamma=\{(2,1),(2,0)\}$. Compute $[T]_{\beta}^{\gamma}$.
3. Section 2.2, Problem 10
4. Section 2.2, Problem 15
5. Section 2.3, Problem 1
6. Let T_{1}, T_{2} be as above. Let $\alpha=\{(1,1),(0,1)\}, \beta=\{(1,2),(-1,1)\}, \gamma=\{(0,1),(2,1)\}$. Verify explicitly that $\left[T_{2} \circ T_{1}\right]_{\alpha}^{\gamma}=\left[T_{2}\right]_{\beta}^{\gamma}\left[T_{1}\right]_{\alpha}^{\beta}$. (This is of course assured by Theorem 2.11.)
7. Section 2.4, Problem 1
8. Section 2.4, Problem 7
9. Let A be the matrix

$$
A=\left(\begin{array}{ccc}
1 & 3 & -1 \\
2 & 5 & 1 \\
3 & 4 & 13
\end{array}\right)
$$

Find A^{-1}.
10. Section 2.5, Problem 2
11. (extra credit) Section 2.4 , Problem 16

