UH - Math 4377/6308- Dr. Heier - Spring 2010
 Sample Midterm Exam
 Time: 75 min

1. (a) (5 points) Let $X=\{1,2,3,4\}$ and $Y=\{3,4\}$. Call two subsets A, B of X equivalent if $A \cup Y=B \cup Y$. Prove that this defines an equivalence relation on the set of subsets of X.
(b) (10 points) Let $z=1+4 i$ and $w=-4-3 i$. Find $|w|$. Write $z w$ and $\frac{z}{w}$ in the form $a+b i$.
2. (a) (10 points) Determine if the following subset of \mathbb{R}^{3} is a subspace. Justify your answer carefully:

$$
\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}-2 a_{2}+a_{3}^{2}=0\right\} .
$$

(b) (10 points) Let W_{1}, W_{2} be two subspaces of a vector space V. Prove that the intersection $W_{1} \cap W_{2}$ is also a subspace of V.
3. (a) (10 points) Find the condition on a, b, c so that

$$
(a, b, c) \in \operatorname{span}\{(1,1,2),(3,0,3),(-1,1,0)\} .
$$

(b) (10 points) Find a basis for the following subspace W of \mathbb{R}^{5} :

$$
W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in \mathbb{R}^{5}: a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=0, a_{2}=2 a_{3}=-a_{5}\right\}
$$

4. (15 points) Find nullity and rank of

$$
T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3},\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \mapsto\left(a_{1}+a_{5},-a_{1}+a_{2}+a_{3}, 3 a_{1}-a_{2}-a_{3}+2 a_{5}\right) .
$$

5. (15 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2},-a_{1}-a_{2}\right)$. Let $\beta=\{(1,2),(-1,1)\}$ and $\gamma=\{(2,1),(2,0)\}$. Compute $[T]_{\beta}^{\gamma}$.
6. (15 points) Let $T: V \rightarrow W$ be a linear transformation. Suppose $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta)=\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for W.
