UH - Math 4378/6309 - Dr. Heier - Spring 2011
 HW 1

Due $1 / 26$, at the beginning of class.
Use regular sheets of paper, stapled together.
Don't forget to write your name on page 1.

1. (1 point) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}+2 a_{2},-2 a_{1}+4 a_{2}+a_{3}, a_{2}+3 a_{3}\right)$. Let $\beta=$ $\{(1,0,1),(0,2,2),(1,2,0)\}$ and $\gamma=\{(5,9,13),(1,-4,-6),(4,7,1)\}$. Compute $[T]_{\beta}^{\gamma}$.
2. (1 point) Find elementary matrices E_{1}, \ldots, E_{k} with the following property. Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

Then $E_{k} \cdot \ldots \cdot E_{1} \cdot A=I_{3}$. (I_{3} denotes the three by three identity matrix.)
3. (1 point) Prove that for

$$
B=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
2 & 1 & 2
\end{array}\right)
$$

no E_{1}, \ldots, E_{k} with $E_{k} \cdot \ldots \cdot E_{1} \cdot B=I_{3}$ exist.
4. (1 point) Find the characteristic polynomial of

$$
A=\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)
$$

Factor it into powers of linear factors and determine the eigenvalues (with multiplicity).
5. (1 point) Find the characteristic polynomial of

$$
A=\left(\begin{array}{cccc}
8 & 5 & 6 & 0 \\
0 & -2 & 0 & 0 \\
-10 & -5 & -8 & 0 \\
2 & 1 & 1 & 2
\end{array}\right)
$$

Factor it into powers of linear factors and determine the eigenvalues (with multiplicity).
6. (1 point) Prove that the matrix $A=\left(\begin{array}{ll}1 & a \\ a & 1\end{array}\right)$ is diagonalizable for all $a \in \mathbb{R}$.
7. (1 point) Find all $a \in \mathbb{R}$ such that the matrix $B=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ is diagonalizable.
8. (1 point) Prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.
9. (1 point) Prove that if $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is diagonalizable and has precisely one eigenvalue c, then $A=c I_{n}$.
10. (1 point) Let $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. Let $T \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ be an invertible matrix such that $B=T^{-1} A T$. Prove that A and B have the same characteristic polynomial.

