UH - Math 4378/6309 - Dr. Heier - Spring 2011
 HW 14 (final assignment)
 Due Monday, May 2, at the beginning of class.

1. (2 points) Find a Jordan canonical form J and a Jordan canonical basis β for the operator $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$ given in standard coordinates by the matrix

$$
A=\left(\begin{array}{cccccc}
2 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 \\
1 & 1 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

2. (2 points) Find a Jordan canonical form J and a Jordan canonical basis β for the operator $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given in standard coordinates by the matrix

$$
A=\left(\begin{array}{cccc}
0 & -3 & 1 & 2 \\
-2 & 1 & -1 & 2 \\
-2 & 1 & -1 & 2 \\
-2 & -3 & 1 & 4
\end{array}\right)
$$

3. (1 point) Find a Jordan canonical form J and a Jordan canonical basis β for the operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given in standard coordinates by the matrix

$$
A=\left(\begin{array}{ccc}
2 & 6 & -15 \\
1 & 1 & -5 \\
1 & 2 & -6
\end{array}\right)
$$

4. (2 points) Find a Jordan canonical form J and a Jordan canonical basis β for the operator $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given in standard coordinates by the matrix

$$
A=\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

5. (1 point) Section 7.2, Problems 8a and 8 b
6. (1 point) Section 7.3, Problem 2
7. (1 point) Section 7.3, Problem 10
8. (1 bonus point) Section 7.3, Problem 9
