UH - Math 4378/6309 - Dr. Heier - Spring 2011
 HW 2

Due $2 / 2$, at the beginning of class.

1. (1 point) Section 5.1, Problem 21
2. (1 point) For the following matrix A, find the eigenvalues and eigenspaces. Determine if A is diagonalizable or not. If yes, give a matrix Q such that $Q^{-1} A Q$ is diagonal.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

3. (1 point) For the following matrix A, find the eigenvalues and eigenspaces. Determine if A is diagonalizable or not. If yes, give a matrix Q such that $Q^{-1} A Q$ is diagonal.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

4. (1 point) For the following matrix A, find the eigenvalues and eigenspaces. Determine if A is diagonalizable or not. If yes, give a matrix Q such that $Q^{-1} A Q$ is diagonal.

$$
A=\left(\begin{array}{lll}
0 & 4 & 4 \\
4 & 0 & 4 \\
4 & 4 & 0
\end{array}\right)
$$

5. (1 point) For the following matrix A, find the eigenvalues and eigenspaces. Determine if A is diagonalizable or not. If yes, give a matrix Q such that $Q^{-1} A Q$ is diagonal.

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

6. (1 point) For the following matrix A, find the eigenvalues and eigenspaces. Determine if A is diagonalizable or not. If yes, give a matrix Q such that $Q^{-1} A Q$ is diagonal.

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 1 & -1 & 3
\end{array}\right)
$$

7. (1 point) For the following matrix A, find the eigenvalues and eigenspaces. Determine if A is diagonalizable or not. If yes, give a matrix Q such that $Q^{-1} A Q$ is diagonal.

$$
A=\left(\begin{array}{cccc}
4 & 1 & 0 & 0 \\
1 & 4 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

8. (1 point) For

$$
A=\left(\begin{array}{ll}
8 & 2 \\
6 & 4
\end{array}\right)
$$

find an expression for A^{n}, where n is an arbitrary positive integer.
9. (1 point) Section 5.2, Problem 10
10. (1 point) Section 5.2, Problem 11

