UH - Math 4378/6309 - Dr. Heier - Spring 2011
 HW 8

Due $03 / 23$, at the beginning of class.

Use regular sheets of paper, stapled together.

Don't forget to write your name on page 1.

1. (1 point) Give an example of a linear operator $T: V \rightarrow V$ with V a real inner product vector space such that T is normal, but not diagonalizable. (It is ok to give T as a matrix.)
2. (1 point) Take your example from Problem 1 and explicitly find an ONB of eigenvectors of T over the complex numbers. (Note that the existence of the ONB is guaranteed by Theorem 6.16.)
3. (1 point) Consider the linear operator on \mathbb{R}^{3} given in standard coordinates by the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & -1 \\
-1 & -1 & 5
\end{array}\right)
$$

Find an ONB of eigenvectors for the standard inner product on \mathbb{R}^{3}. Verify explicitly that all vectors you list are orthogonal to each other.
4. (1 point) Consider the linear operator on \mathbb{R}^{3} given in standard coordinates by the matrix

$$
A=\left(\begin{array}{ccc}
0 & -2 & -2 \\
-2 & 0 & -2 \\
-2 & -2 & 0
\end{array}\right)
$$

Find an ONB of eigenvectors for the standard inner product on \mathbb{R}^{3}. Verify explicitly that all vectors you list are orthogonal to each other.
5. (2 points) Consider the linear operator on \mathbb{C}^{3} given in standard coordinates by the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

Find a basis of eigenvectors over the complex numbers. Is there an ONB of eigenvectors for the standard inner product on \mathbb{C}^{3} ? Why?
6. (2 points) Section 6.4, Problem 10
7. (2 points) Section 6.4, Problem 11
8. (1 bonus point) Section 6.4 , Problem 16

