UH - Math 4378/6309 - Dr. Heier - Spring 2011
 Sample Midterm Exam
 Time: 53 min

1. (a) (15 points) Find the characteristic polynomial of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

(Hint: You may use any theorem from class, but you must explain your reasoning carefully.)
(b) (10 points) State the Cayley-Hamilton Theorem and verify explicitly that the linear operator on \mathbb{R}^{4} given by the matrix A satisfies it.
2. (25 points) Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace. Let v_{1}, v_{2} be eigenvectors of T corresponding to distinct eigenvalues. Assume also that $v_{1}+v_{2} \in W$. Prove that $v_{1} \in W$ and $v_{2} \in W$.
3. (a) (10 points) Consider \mathbb{C}^{3} with the standard inner product. Let $v=(1,0, i)$. Find an ONB for $\{v\}^{\perp}$.
(b) (10 points) Let V be an inner product space, and let T be a normal operator on V. Prove that, for all $x \in V$,

$$
\|T(x)\|=\left\|T^{*}(x)\right\|
$$

(c) (5 points) Under the assumptions in part (b), is it true that for all $x \in V,\|T(x)\|=$ $\|x\|$? Justify your answer carefully.
4. (a) (10 points) Let

$$
A=\left(\begin{array}{cc}
0 & 1+i \\
1+i & 0
\end{array}\right) .
$$

Is A self-adjoint? Is A normal? Prove your answer.
(b) (15 points) Find an ONB of eigenvectors of A for \mathbb{C}^{2}.

