UH - Math 6303 - Dr. Heier - Spring 2014
 HW 4

Due $04 / 17$, at the beginning of class.

Use regular sheets of paper, stapled together. Don't forget to write your name on page 1 .

1. (1 point) Suppose V is a finite algebraic set in \mathbb{A}^{n}. If V has m points, prove that $k[V]$ is isomorphic as a k-algebra to k^{m}. Hint: Use the Chinese Remainder Theorem.
2. (1 point) Let k be a finite field. Prove that every subset of \mathbb{A}^{n} is an affine algebraic set.
3. (1 point) Let k be a field. Identify the 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with entries in k with the point (a, b, c, d) in \mathbb{A}^{4}. Show that the group $S L_{2}(k)$ of matrices of determinant 1 is an algebraic set in \mathbb{A}^{4}.
4. (3 points) Let $V=\mathcal{Z}(x y-z) \subset \mathbb{A}^{3}$. Prove that V is isomorphic to \mathbb{A}^{2} and provide an explicit isomorphism φ and associated k-algebra isomorphism $\tilde{\varphi}: k[V] \rightarrow k\left[\mathbb{A}^{2}\right]$, along with their inverses. Is $V=\mathcal{Z}\left(x y-z^{2}\right)$ isomorphic to \mathbb{A}^{2} ?
5. (2 points) Let I, J be ideals in the ring R. Prove the following statements:
(a) If $I^{k} \subseteq J$ for some $k \geq 1$ then $\operatorname{rad} I \subseteq \operatorname{rad} J$.
(b) If $I^{k} \subseteq J \subseteq I$ for some $k \geq 1$ then $\operatorname{rad} I=\operatorname{rad} J$.
(c) $\operatorname{rad}(I J)=\operatorname{rad}(I \cap J)=\operatorname{rad} I \cap \operatorname{rad} J$.
6. (2 points) Prove that for k a finite field the Zariski topology is the same as the discrete topology, i.e., every subset is closed and open.
